WELCOME TO VIEW OUR PROJECT ON DEFECTS OF HUMAN EYE DUE TO LIGHT.

Slides:



Advertisements
Similar presentations
L 31 Light and Optics-3 Images formed by mirrors
Advertisements

BY P.K.BERA. & N.MAKHIJA.. VIII TO X CLASSES AGE GROUP : 13 TO 15 YEARS.
Characteristics of Lenses Lens  Is a transparent object with at least one curved side that causes light to refract.  Have 2 sides  Either side could.
14.
The Eye and Sight Contrast ways in which light rays are bend by concave and convex lenses. Describe how a prism forms a visible spectrum Explain why different.
Content Standard 5 – Contrast ways in which light rays are bent by concave and convex lenses.
Optics. Spherical Mirrors Spherical mirror – a section of a sphere of radius R and with a center of curvature C R C Mirror.
14.2: Lenses.
Pinhole Cameras Converging & Diverging Lenses. Pinhole Image.
L 33 Light and Optics [3] images formed by mirrors
3.6: Mirrors & Lenses 12/15/14. Part 1: Mirrors A.Light is necessary for eyes to see 1.Light waves spread in all directions from a light. 2.The brain.
Lenses  Lenses display focusing properties because of refraction.  A convex lens will focus a parallel beam of light to a certain point.  A concave.
Thin Lens Equation Distances of virtual images are negative & distances of real images are positive. Heights are positive if upright (above P.A.) and negative.
LENSES.
L 33 Light and Optics [3] images formed by mirrors –plane mirrors –curved mirrors Concave (converging) Convex (diverging) Images formed by lenses the human.
 Cornea: ◦ Tissue that forms a transparent, curved structure in front of the eye ◦ Refracts light before it enters the eye  Retina: ◦ A layer of cells.
 Get out notes and practice from yesterday  Pick up ruler and finish practice from yesterday.
Pg  The Eyeball The Eyeball  Iris: coloured part of the eye that opens and closes to let in more or less light. In the centre you find.
Application of Lenses Lenses in Eyes
L 33 Light and Optics [3] Measurements of the speed of light  The bending of light – refraction  Total internal reflection  Dispersion Dispersion 
VISION DEFECTS.
Physics. PHS 5041 Optics Lenses Lenses are transparent objects with at least one curved surface. Lenses can be: _Convex or converging (***thickest at.
1 UCT PHY1025F: Geometric Optics Physics 1025F Geometric Optics Dr. Steve Peterson THE EYE.
Refraction and Lens. Refraction Refraction: the change in direction of a wave as it crosses the boundary b/w 2 media in which a wave travels different.
OBJECTIVE IDENTIFY TYPES OF CORRECTIVE LENSES USED TO CORRECT SIGHT PROBLEMS [COS 5, SAT 10]
Spherical Aberration Aberration - a departure from the expected or proper course. (Webster's Dictionary) Spherical mirrors have an aberration. There is.
18.4 Seeing Light Pg
OPTICS AND THE EYE The Eye Parts of the Eye How the Eye Works (Normal Vision) Nearsightedness Farsightedness.
Lenses Chapter 30.
 What is refraction?  Refraction is the bending of a light when it enters a medium where the speed of light is different. When a light ray passes from.
The Eye 5.SEEING LIGHT - THE EYE Cornea -does most of the focusing Iris - Pupil - has the eye color and controls light intensity Lens - the hole in.
Mirrors and Lenses Chapter 23
Light Waves Sec 1.
Lenses June Today  Lenses  Total Internal Reflection  Lab – Exploring Lenses  Next class:  Telescopes, rainbows & review.
Chapter 30 Key Terms June 4 – June 10 Mr. Gaydos.
Optics 2: REFRACTION & LENSES. REFRACTION Refraction: is the bending of waves because of the change of speed of a wave when it passes from one medium.
Lenses. Applications of Light Refraction What are some common applications of the refraction of light? Cameras Microscopes Lenses Eyeglasses Human eye.
Mirrors and Lenses Chapter 14.
Function of the eye and terms to know! emmetropia: Normal focusing hypermetropia: farsightedness : the failure of the lens to bend the light rays enough.
Light – Part 3 Defects in Seeing Year 7 Science. Review from last lesson We learned in our last lesson about the major parts of the eye and their function.
Eye (Relaxed) Determine the focal length of your eye when looking at an object far away.
You should be able to: Draw ray diagrams for converging and diverging lenses Use the equation 1/u+1/v =1/f for converging lenses Perform.
Images formed by mirrors –plane mirrors –curved mirrors concave convex Images formed by lenses the human eye –correcting vision problems nearsightedness.
Lenses. Diverging and Converging Lenses Double Convex lenses focus light rays to a point on the opposite side of the lens. Double Concave lenses diverge.
Vision. Normal Vision light is focused directly on the retina - can see clearly both near & far.
How do I see color? Photochemical receptors receive the light (____ and _____) Rods-brightness cones-the color They release a ________ signal to the brain.
L 33 Light and Optics [3] images formed by mirrors
Chapter 12 Review Light and Vision. Category: The Eye Give the name and function of the eye part indicated by #3 (the thin layer between #1 and #2). Choroid.
The Eye and Sight Chapter 12. Vision begins when light rays are reflected off an object and enter the eyes through the cornea, the transparent outer covering.
HUMAN EYE AND LENSES. INTRODUCTION Eye is the light-sensitive organ of vision in animals. The actual process of seeing is performed by the brain rather.
Chapter 19. Reflection The smooth surface of the lake reflects light rays so that the observer sees an inverted image of the landscape.
Light refraction Chapter 29 in textbook.
Convex and Concave Lenses
Lens Applications.
Chapter 20 Mirrors and Lenses
Refraction and Lenses. The most common application of refraction in science and technology is lenses. The kind of lenses we typically think of are made.
Chapter 13: Mirrors and Lenses Section 1 : Mirrors Section 2: Lenses Section 3: Optical Instruments.
Section first # represents how far away from the chart the person can stand and still be able to read a particular line second # is how far away.
L 31 Light and Optics-3 Images formed by mirrors
Mirrors and Reflection
L 32 Light and Optics [3] images formed by mirrors
L 33 Light and Optics [3] Measurements of the speed of light 
L 31 Light and Optics-3 Images formed by mirrors
L 32 Light and Optics [3] Measurements of the speed of light 
WELCOME TO VIEW OUR PROJECT ON DEFECTS OF HUMAN EYE DUE TO LIGHT.
L 33 Light and Optics [3] Measurements of the speed of light 
L 31 Light and Optics-3 Images formed by mirrors
L 33 Light and Optics [3] images formed by mirrors
Mirrors and Lenses.
Presentation transcript:

WELCOME TO VIEW OUR PROJECT ON DEFECTS OF HUMAN EYE DUE TO LIGHT.                              WELCOME TO VIEW OUR PROJECT ON DEFECTS OF HUMAN EYE DUE TO LIGHT.

INTRODUCTION Eye, light-sensitive organ of vision in animals. The eyes of various species vary from simple structures that are capable only of differentiating between light and dark to complex organs—such as those of humans and other mammals—that can distinguish minute variations of shape, color, brightness, and distance. The actual process of seeing is performed by the brain rather than by the eye. The function of the eye is to translate the electromagnetic vibrations of light into patterns of nerve impulses that are transmitted to the brain.

DEFECTS OF THE EYE   Myopia: (nearsightedness) This is a defect of vision in which far the refractive power of the eye’s lens too strong. objects appear blurred but near objects are seen clearly. The image is focused in front of the retina rather than on it usually because the eyeball is too long or Myopia can be corrected by wearing glasses/contacts with concave lenses these help to focus the image on the retina Hyperopia: (farsightedness) This is a defect of vision in which there is difficulty with near vision but far objects can be seen easily. The image is focused behind the retina rather than upon it. This occurs when the eyeball is too short or the refractive power of the lens is too weak. Hyperopia can be corrected by wearing glasses/contacts that contain convex lenses.

Astigmatism: This defect is when the light rays do not all come to a single focal point on the retina, instead some focus on the retina and some focus in front of or behind it. This is usually caused by a non-uniform curvature of the cornea. A typical symptom of astigmatism is if you are looking at a pattern of lines placed at various angles and the lines running in one direction appear sharp whilst those in other directions appear blurred. Astigmatism can usually be corrected by using a special spherical cylindrical lens; this is placed in the out-of-focus axis.

DIFFERENT FOCUS OF EYE Focusing the Eye Light rays entering the eye are refracted, or bent, when they pass through the lens. Normal vision requires that the rays focus on the retina. If the eyeball is too long, an accurately focused image falls short of the retina. This is called myopia, or shortsightedness. A shortsighted person sees distant objects unclearly. Longsighted focus, or hyperopia, results when the eyeball is too short. In this case, an accurately focused image would fall behind the retina.

CONCAVE LENS A concave lens is curved inward; it is shaped like two dishes placed back-to-back. Light passing through a concave lens bends outward, or diverges. Unlike convex lenses, which produce real images, concave lenses produce only virtual images. A virtual image is one from which light rays only appear to come. This one appears as a smaller image just in front of the actual object (in this case a shamrock). Concave lenses are generally prescribed for myopic, or short-sighted, people. Concave lenses help the eyes to produce a sharp image on the retina instead of in front of it.

CONVEX LENS A convex lens has a thick centre and thinner edges. Light passing through a convex lens is bent inward, or made to converge. This causes an image of the object to form on a screen on the opposite side of the lens. The image is in focus if the screen is placed at a particular distance from the lens that depends upon the distance of the object and the focal point of the lens. The lens in the human eye is convex, but, unlike a glass lens, it is elastic so that it can change shape to focus on objects at varying distances. The lens becomes short and fat when viewing close objects and elongated and thin when viewing distant objects.

SCANNING ELECTRON MICROSCOPE This scanning electron microscope (SEM) is to the left of the operator, with the computer images of the specimen on the screens to the right. Although the SEM cannot ”see“ objects as small as those that a transmission electron microscope can resolve, the images it produces are more useful for seeing the three-dimensional surface structure of small objects.

MAGNIFYING GLASS . A magnifying glass is a large convex lens commonly used to examine small objects. The lens bends incoming light virtual so that an enlarged, image of the object (in this case a mushroom) appears beyond it. The image is called virtual because the light rays that appear to come from it do not actually pass through it.

I ONCE AGAIN THANK YOU ALL FOR VIEWING MY PROJECT