Case Study – Gumbel Distribution

Slides:



Advertisements
Similar presentations
Frequency Analysis Reading: Applied Hydrology Sections 12-2 to 12-6.
Advertisements

Parameters of distribution
1 Vol. 01. p Vol. 01. p Vol. 01. p.20.
1 Vol. 03. p Vol. 03. p Vol. 03. p.21.
1 Vol. 02. p Vol. 02. p Vol. 02. p.19.
1 Vol. 03. p Vol. 03. p Vol. 03. p.16.
1 Vol. 02. p Vol. 02. p Vol. 02. p.30.
1 Vol. 03. p Vol. 03. p Vol. 03. p.35.
1 Vol. 02. p Vol. 02. p Vol. 02. p.10.
1 Vol. 01. p Vol. 01. p Vol. 01. p.14.
Hydrologic Statistics
Surface Water Hydrology Summarized in one equation V = velocity, fps or m/s A = channel cross-sectional area, sf or m 2.
WFM 6204: Hydrologic Statistics © Dr. Akm Saiful IslamDr. Akm Saiful Islam WFM-6204: Hydrologic Statistics Akm Saiful Islam Lecture-1: Characteristics.
A) 80 b) 53 c) 13 d) x 2 = : 10 = 3, x 3 = 309.
1 Expectation Maximization Algorithm José M. Bioucas-Dias Instituto Superior Técnico 2005.
1 Financial Mathematics Clicker review session, Midterm 01.
1 Financial Mathematics Clicker review session, Final.
Financial Mathematics Clicker review session, Midterm 01 1.
Model Estimation and Comparison Gamma and Lognormal Distributions 2015 Washington, D.C. Rock ‘n’ Roll Marathon Velocities.
First introduced in 1977 Lots of mathematical derivation Problem : given a set of data (data is incomplete or having missing values). Goal : assume the.
1 Financial Mathematics Clicker review session, Midterm 01.
Estimation of parameters. Maximum likelihood What has happened was most likely.
A gentle introduction to Gaussian distribution. Review Random variable Coin flip experiment X = 0X = 1 X: Random variable.
CSE 221: Probabilistic Analysis of Computer Systems Topics covered: Statistical inference (Sec. )
I.1 ii.2 iii.3 iv.4 1+1=. i.1 ii.2 iii.3 iv.4 1+1=
Today Today: Chapter 9 Assignment: 9.2, 9.4, 9.42 (Geo(p)=“geometric distribution”), 9-R9(a,b) Recommended Questions: 9.1, 9.8, 9.20, 9.23, 9.25.
2. Point and interval estimation Introduction Properties of estimators Finite sample size Asymptotic properties Construction methods Method of moments.
Statistics and Probability Theory Prof. Dr. Michael Havbro Faber
I.1 ii.2 iii.3 iv.4 1+1=. i.1 ii.2 iii.3 iv.4 1+1=
Extreme Value Analysis, August 15-19, Bayesian analysis of extremes in hydrology A powerful tool for knowledge integration and uncertainties assessment.
The Binary Logit Model Definition Characteristics Estimation 0.
1 CHAPTER 14 FORECASTING VOLATILITY II Figure 14.1 Autocorrelograms of the Squared Returns González-Rivera: Forecasting for Economics and Business, Copyright.
7. Nonparametric inference  Quantile function Q  Inference on F  Confidence bands for F  Goodness- of- fit tests 1.
CSE 221: Probabilistic Analysis of Computer Systems Topics covered: Statistical inference.
CE 374K Hydrology Frequency Factors. Frequency Analysis using Frequency Factors f(x) x xTxT.
Flood Frequency Analysis
Newton-Raphson Method Electrical Engineering Majors Authors: Autar Kaw, Jai Paul Transforming Numerical Methods Education.
Newton-Raphson Method
WFM 5201: Data Management and Statistical Analysis © Dr. Akm Saiful IslamDr. Akm Saiful Islam WFM 5201: Data Management and Statistical Analysis Akm Saiful.
Variability. Statistics means never having to say you're certain. Statistics - Chapter 42.
FREQUENCY ANALYSIS.
Recent hydrological and climatological changes V. Barros.
Newton-Raphson Method Chemical Engineering Majors Authors: Autar Kaw, Jai Paul Transforming Numerical Methods Education.
Negative Binomial Regression NASCAR Lead Changes
Extreme Value Theory: Part II Sample (N=1000) from a Normal Distribution N(0,1) and fitted curve.
Lecture notes for Stat 231: Pattern Recognition and Machine Learning 1. Stat 231. A.L. Yuille. Fall 2004 AdaBoost.. Binary Classification. Read 9.5 Duda,
1 Pattern Recognition: Statistical and Neural Lonnie C. Ludeman Lecture 29 Nov 11, 2005 Nanjing University of Science & Technology.
Newton-Raphson Method. Figure 1 Geometrical illustration of the Newton-Raphson method. 2.
Methodology for Risk-Based Flood Damage Assessment David R. Maidment CE 394K.2, Spring 1999.
Point Estimation of Parameters and Sampling Distributions Outlines:  Sampling Distributions and the central limit theorem  Point estimation  Methods.
TOLERATE Hydrological scenarios – results from Pori Noora Veijalainen Suomen Ympäristökeskus TOLERATE researchers meeting , VATT.
LOGISTIC REGRESSION Binary dependent variable (pass-fail) Odds ratio: p/(1-p) eg. 1/9 means 1 time in 10 pass, 9 times fail Log-odds ratio: y = ln[p/(1-p)]
S TOCHASTIC M ODELS L ECTURE 4 P ART II B ROWNIAN M OTIONS Nan Chen MSc Program in Financial Engineering The Chinese University of Hong Kong (Shenzhen)
Logistic Regression Saed Sayad 1www.ismartsoft.com.
FREQUENCY ANALYSIS Siti Kamariah Md Sa’at PPK Bioprocess
Newton-Raphson Method Computer Engineering Majors Authors: Autar Kaw, Jai Paul Transforming Numerical Methods Education.
1 Cluster Analysis – 2 Approaches K-Means (traditional) Latent Class Analysis (new) by Jay Magidson, Statistical Innovations based in part on a presentation.
Project on Newton’s Iteration Method Presented by Dol Nath Khanal Project Advisor- Professor Dexuan Xie 05/11/2015.
ПЕЧЕНЬ 9. Закладка печени в период эмбрионального развития.
APPLIED MATHEMATICS Assignment # 3 GROUP 6 : Charlotte O. Tang Ritchie Roi Chua Ramon Naguiat Mark Anthony Salazar Mary Jane Pagmulotan Tong Ya.
Application of Extreme Value Theory (EVT) in River Morphology
Stat 223 Introduction to the Theory of Statistics
Hydrology & Water Resources Eng.
Flood Frequency Analysis
Model Estimation and Comparison Gamma and Lognormal Distributions
Hydrologic Statistics
POINT ESTIMATOR OF PARAMETERS
5.7.2 River discharge - streamflow
The centreline (CL) on a Run Chart is the Median
Presentation transcript:

Case Study – Gumbel Distribution Rhone River – Maximum Daily Discharge (Annual) – 1826-1936 Data Source: E. Gumbel (1941). “The Return Period of Flood Flows,” The Annals of Mathematical Statistics, Vol. 12,#2, pp.163-190.

Data Years 1826-1936: maximum daily discharge of river obtained. order 899 23 1992 45 2240 67 2586 89 3067 2 1172 24 46 2258 68 2594 90 3126 3 1231 25 2006 47 2281 69 91 3179 4 1272 26 48 2296 70 92 3214 5 27 2013 49 2327 71 2602 93 3250 6 1432 28 2050 50 2342 72 2626 94 3266 7 29 51 2358 73 2627 95 3293 8 1439 30 2072 52 2381 74 2643 96 3310 9 1444 31 2094 53 2420 75 2675 97 10 1502 32 2101 54 2444 76 98 3354 11 1541 33 2115 55 2452 77 2773 99 3426 12 1560 34 2145 56 2467 78 100 3444 13 1639 35 57 2475 79 101 14 1706 36 2153 58 80 2839 102 3480 15 1780 37 2160 59 81 2856 103 3606 16 1829 38 2168 60 2491 82 2881 104 3625 17 1850 39 2175 61 2514 83 105 3708 18 1857 40 2206 62 84 2965 106 3801 19 1913 41 63 85 3007 107 3810 20 42 64 86 3050 108 3905 21 1934 43 2221 65 2538 87 3058 109 4096 22 1955 44 2236 66 2554 88 110 4105   111 4390

Gumbel Distribution

Maximum Likelihood Estimation (I)

Maximum Likelihood Estimation (II)

Maximum Likelihood Estimation (III) Step 1, choose starting values, say: a(0) and b(0) are assigned the method of moment estimators Step 2: Choose a tolerance level for the change is estimates, say k=10-6 Step 3: Obtain H-1(a(0), b(0)) and f(a(0), b(0)) Step 4: Obtain a(1) and b(1) from Newton-Raphson algorithm Step 5: Check to see if (a(1)- a(0))2+ (b(1)- b(0))2 <k. If Yes, Stop. If No, Return to Step 3, obtaining H-1(a(1), b(1)), f(a(1), b(1))

Rhone River Discharge Data

Rhone River Discharge Data (2) Iteration History: Round alpha beta Delta <k? 2178.157 546.0046 N/A   1 2161.899 604.3112 3663.998 No 2 2156.052 631.3299 764.1949 3 2155.18 635.4366 17.62557 4 2155.163 635.5164 0.006657 5 8.99E-10 Yes

Rhone River Discharge (3)

Rhone River Discharge Data (4)