Rational Functions and Their Graphs. Example Find the Domain of this Function. Solution: The domain of this function is the set of all real numbers not.

Slides:



Advertisements
Similar presentations
Warm Up Find the zeros of the following function F(x) = x2 -1
Advertisements

Ch. 9.3 Rational Functions and Their Graphs
Warm-Up: January 12, 2012  Find all zeros of. Homework Questions?
3.6: Rational Functions and Their Graphs
Objectives: Find the domain of a Rational Function Determine the Vertical Asymptotes of a Rational Function Determine the Horizontal or Oblique Asymptotes.
Section 7.2.  A rational function, f is a quotient of polynomials. That is, where P(x) and Q(x) are polynomials and Q(x) ≠ 0.
1 Find the domains of rational functions. Find the vertical and horizontal asymptotes of graphs of rational functions. 2.6 What You Should Learn.
Rational Functions. 5 values to consider 1)Domain 2)Horizontal Asymptotes 3)Vertical Asymptotes 4)Holes 5)Zeros.
Infinite Limits and Limits to Infinity: Horizontal and Vertical Asymptotes.
Algebra of Limits Assume that both of the following limits exist and c and is a real number: Then:
Algebra of Limits Assume that both of the following limits exist and c and is a real number: Then:
5.1 Polynomial Functions Degree of a Polynomial: Largest Power of X that appears. The zero polynomial function f(x) = 0 is not assigned a degree.
9.3 Rational Functions and Their Graphs Rational Function – A function that is written as, where P(x) and Q(x) are polynomial functions. The domain of.
Chapter 3 – Polynomial and Rational Functions Rational Functions.
Rational Functions - Rational functions are quotients of polynomial functions: where P(x) and Q(x) are polynomial functions and Q(x)  0. -The domain of.
Graphing Rational Functions. 2 xf(x)f(x) xf(x)f(x) As x → 0 –, f(x) → -∞.
2.6 Rational Functions and Asymptotes 2.7 Graphs of Rational Functions Rational function – a fraction where the numerator and denominator are polynomials.
ACTIVITY 35: Rational Functions (Section 4.5, pp )
Class Work Find the real zeros by factoring. P(x) = x4 – 2x3 – 8x + 16
Chapter 7 Polynomial and Rational Functions with Applications Section 7.2.
Aim: What are the rational function and asymptotes? Do Now: Graph xy = 4 and determine the domain.
Rational Functions and Their Graphs
The Friedland Method 9.3 Graphing General Rational Functions.
Rational Functions and Their Graphs. Example Find the Domain of this Function. Solution: The domain of this function is the set of all real numbers not.
Chapter 3 Polynomial and Rational Functions Copyright © 2014, 2010, 2007 Pearson Education, Inc Rational Functions and Their Graphs.
Algebra 2 Ch.9 Notes Page 67 P Rational Functions and Their Graphs.
1.5 Infinite Limits Objectives: -Students will determine infinite limits from the left and from the right -Students will find and sketch the vertical asymptotes.
Asymptotes.
Copyright © 2011 Pearson Education, Inc. Publishing as Prentice Hall.
Chapter 3 Polynomial and Rational Functions Copyright © 2014, 2010, 2007 Pearson Education, Inc Rational Functions and Their Graphs.
Rational Functions and Asymptotes
Section 4.5 Rational Functions Copyright ©2013, 2009, 2006, 2001 Pearson Education, Inc.
Alg 2 Warm Up – Wed (5/15)-Thurs (5/16) 1.List the possible roots. Then find all the zeros of the polynomial function. f(x) = x 4 – 2x 2 – 16x -15 Answers:
2-6 rational functions.  Lines l and m are perpendicular lines that intersect at the origin. If line l passes through the point (2,-1), then line m must.
Rational Functions and Their Graphs Objectives Find the domain of rational functions. Find horizontal and vertical asymptotes of graphs of rational functions.
Chapter 3 Polynomial and Rational Functions Copyright © 2014, 2010, 2007 Pearson Education, Inc Rational Functions and Their Graphs.
Table of Contents Rational Functions and Domains where P(x) and Q(x) are polynomials, Q(x) ≠ 0. A rational expression is given by.
Rational Functions and Domains where P(x) and Q(x) are polynomials, Q(x) ≠ 0. A rational expression is given by.
Rational Functions Rational functions are quotients of polynomial functions. This means that rational functions can be expressed as where p(x) and q(x)
Warm-Up 4 minutes Solve each equation. 1) x + 5 = 02) 5x = 03) 5x + 2 = 0 4) x 2 - 5x = 05) x 2 – 5x – 14 = 06) x 3 + 3x 2 – 54x = 0.
Date: 1.2 Functions And Their Properties A relation is any set of ordered pairs. The set of all first components of the ordered pairs is called the domain.
Limits at Infinity: End behavior of a Function
Rational Functions Marvin Marvin Pre-cal Pre-cal.
2.6. A rational function is of the form f(x) = where N(x) and D(x) are polynomials and D(x) is NOT the zero polynomial. The domain of the rational function.
Chapter 2 Polynomial and Rational Functions Copyright © 2014, 2010, 2007 Pearson Education, Inc Rational Functions and Their Graphs.
Mrs.Volynskaya Ch.2.6 Rational Functions and Their Graphs.
Today in Pre-Calculus No calculators needed Notes: –Rational Functions and Equations –Transformations of the reciprocal function Go over quiz Homework.
Limits Involving Infinity Section 1.4. Infinite Limits A limit in which f(x) increases or decreases without bound as x approaches c is called an infinite.
Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Graph Sketching: Asymptotes and Rational Functions OBJECTIVES  Find limits.
College Algebra Chapter 3 Polynomial and Rational Functions Section 3.5 Rational Functions.
 Find the horizontal and vertical asymptotes of the following rational functions 1. (2x) / (3x 2 +1) 2. (2x 2 ) / (x 2 – 1) Note: Vertical asymptotes-
4.5 Rational Functions  For a rational function, find the domain and graph the function, identifying all of the asymptotes.
Rational Functions…… and their Graphs
Aim: What are the rational function and asymptotes?
Rational Functions and Models
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
College Algebra Chapter 3 Polynomial and Rational Functions
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Rational Functions and Their Graphs
GRAPHING RATIONAL FUNCTIONS
Graph Sketching: Asymptotes and Rational Functions
Graphing Polynomial Functions
3.5: ASYMPTOTES.
3.3: Rational Functions and Their Graphs
3.3: Rational Functions and Their Graphs
Graphing Rational Functions
2.6 Section 2.6.
Graphing Simple Rational Functions
Rational Functions A rational function f(x) is a function that can be written as where p(x) and q(x) are polynomial functions and q(x) 0 . A rational.
Graphing Rational Functions
Presentation transcript:

Rational Functions and Their Graphs

Example Find the Domain of this Function. Solution: The domain of this function is the set of all real numbers not equal to 3.

Arrow Notation SymbolMeaning x  a  x approaches a from the right. x  a  x approaches a from the left. x   x approaches infinity; that is, x increases without bound. x    x approaches negative infinity; that is, x decreases without bound.

The line x  a is a vertical asymptote of the graph of a function f if f (x) increases or decreases without bound as x approaches a. f (x)   as x  a  f (x)   as x  a  The line x  a is a vertical asymptote of the graph of a function f if f (x) increases or decreases without bound as x approaches a. f (x)   as x  a  f (x)   as x  a  Thus, f (x)   or f(x)    as x approaches a from either the left or the right. f a y x x = a f a y x Definition of a Vertical Asymptote

The line x  a is a vertical asymptote of the graph of a function f if f (x) increases or decreases without bound as x approaches a. Thus, f (x)   or f(x)    as x approaches a from either the left or the right. x = a f a y x f a y x f (x)  as x  a  f (x)    as x  a  Definition of a Vertical Asymptote

Locating Vertical Asymptotes Ifis a rational function in which p(x) and q(x) have no common factors and a is a zero of q(x), the denominator, then x = a is a vertical asymptote of the graph of f.

The line y = b is a horizontal asymptote of the graph of a function f if f (x) approaches b as x increases or decreases without bound. f y x y = b x y f f y x f (x)  b as x   f (x)  b as x   f (x)  b as x  Definition of a Horizontal Asymptote

Locating Horizontal Asymptotes Let f be the rational function given by The degree of the numerator is n. The degree of the denominator is m. 1.If n<m, the x-axis, or y=0, is the horizontal asymptote of the graph of f. 2.If n=m, the line y = a n /b m is the horizontal asymptote of the graph of f. 3.If n>m,t he graph of f has no horizontal asymptote.

Strategy for Graphing a Rational Function Suppose that where p(x) and q(x) are polynomial functions with no common factors. 1. Find any vertical asymptote(s) by solving the equation q (x)  Find the horizontal asymptote (if there is one) using the rule for determining the horizontal asymptote of a rational function. 3.Use the information obtained from the calculators graph and sketch the graph labeling the asymptopes.

Sketch the graph of

The vertical asymptote is x = -2 The horizontal asymptote is y = 2/5