Installation and testing Titelseite September 2013
Safety Potential sources of risk: Active component (Laser) Injury of eyes and skin Fiber stub (cleaved fiber) Consumables Chemicals and its vapor
Cable deployment Indoor Outdoor Latter buried aerial under water Duct direct direct Conduit Duct
Installation methodology Installation methodology depends on type of cable, distance, application and environment wrapped laying pulling blowing aerial
Cable storage Storage Cable and accessories Installation Temperature accor. data sheet Pulling force accor. data sheet Crush resistance accor. data sheet Bending radius accor. data sheet Mehr Infos in den Installations- und Testrichtlinien (Grantieprogramm)
Connector cleaning source:JDSU Finger print Contamination Clean
End face Small parts on the fiber core cause significant return loss (RL) and insertion loss (IL) Contamination Light (RL) (IL)
Cleaning – Ferrule/end face Contaminated end face / fiber core impress of dust parts when connecting Permanent damage on fiber core
Cleaning - Sleeve Contaminated sleeve Dust pushed during plug in of connector Dust ring on ferrule and potentially fiber core
Testing Titelseite September 2011
Inspection/verification test Equipment Power Meter & Light source OTDR Fiber/Connector inspection Visual fault locator Total optical loss Reflection Link characteristic Visuelle inspection
Visual inspection Connector Contamination Damage Identification Fiber break Bending Faulty connection
Measurement principales Power meter Light source Power Meter Power Meter Light source Stecker Stecker Rückstreumessung (OTDR) OTDR OTDR Stecker Stecker
Power budget calculation OF-500 Connection Splice 200 m 50 m 250 m PMD Component ISO11801 “state of the art” Fiber OM3 3.5db/km 1.75dB 2.8dB/km) 1.40dB Connector 0.75dB/Steck 2.25dB 0.5dB/Steck 1.50dB Fusion splice 0.3dB/Spl 0.30dB 0.1dB/Spl 0.10dB Dämpfung Gesamt 4.30dB 3.00dB Berechnung Dämpfungswert OM3 bei 850nm Channel attenuation for OF-500 at 850nm -> 3.25dB
Power measurement – level setting 1. Reference measuring Transmitter Test cable 1 Receiver Test cable 2 Adjust: Attenuation = 0 dB
Power measurement – link evaluation 2. Measuring the system’s attenuation Transmitter Receiver LWL - Anlage Total attenuation [dB] Test result Attenuation = 2.1 dB
Power measurement testing Methodology according ISO/IEC 61280-4 C Licht quelle S Launch cable Power meter D Test Jumper Methodology 3 - Kanal Methodology 1 - CP Methodology 2 - PL Depending on the reference measurement (1, 2 or 3 test jumper) a different result will be achieved. ISO/IEC 61280-4 Methode 2 is equal to EN50346 – Methode 1
Error reduction: Mandrel wrap principle 50 m mandrel 18 mm for 3 mm jumpers 62.5 m mandrel 20 mm for 3 mm jumpers 9 m N.A. Test jumper length 1 m to 5 m 5 wraps Launch cord Mandrel This “mode filter” causes high bend loss in loosely coupled modes and low loss in tightly coupled modes. Thus the mandrel removes all loosely coupled modes generated by an overfilled launch in a short (cords) link used during the reference setting Mandral wrap may reduce the insertion loss by: up to 0.5dB – 62.5 m up to 0.9dB – 50 m
Optical Time Domain Reflectometer OTDR Impuls- generator Light source Beam splitter LWL t bei der OTDR Messung wird ein Laserpuls der Dauer von 3ns bis 20µs in einen Lichtwellenleiter eingekoppelt und das Rückstreulicht über der Zeit gemessen Measuring delay Receiver Evaluation optical Signal electrical Signal
OTDR measuring Rayleigh scattering and Fresnel reflections A light pulse propagates in an optical waveguide. OTDR The light pulse is partly reflected by an interfering effect. OTDR OTDR The reflected light pulse is detected by the OTDR. bei der OTDR Messung wird ein Laserpuls der Dauer von 3ns bis 20µs in einen Lichtwellenleiter eingekoppelt und das Rückstreulicht über der Zeit gemessen Rayleigh scattering and Fresnel reflections
An example of an OTDR waveform Fusion- Connector Fiber Mech. Fiber- splice bend splice end OTDR Attenuation (dB) Distance (km)
OTDR Pulse length in fiber OTDR pulse width OTDR Pulse length in fiber OTDR Pulse Larger pulse width: More power, larger dynamic range Shorter pulse width: better resolution, dynamic range reduced due to more incidents recognized. Pulsweite beeinflußt Ereignis-Totzonen Ein von OTDR ausgesendeter Puls hat eine entsprechende physikalische Länge (Energiegehalt) Solange die Pulslänge kürzer ist als der Abstand zwischen einem Ergeignis und dem ihm folgenden, kann das folgende Ereignis detektiert werden (Ereignis-Totzone) Kürzere Pulse haben aber weniger Energie und die effektive Dynamik wird dadurch reduziert Es gilt die optimale Mittelung für beide Gegebenheiten zu finden
Dynamic range of an OTDR PMAX Backscatter level at OTDR test port dB Dynamic Range Measurement Range Noise floor km
Attenuation- & event dead zone OTDR Ideal trace of a reflected event with shortest pulse width, PMIN 1.5 dB Measured OTDR trace 0.5 dB PMIN Event dead zone Attenuation dead zone
Power measuring with OTDR Test set up FO system under test 1) 2) 1) launching fiber 2) launching fiber 200 m - 500 m for MM 200 m – 500 m for MM 500 m - 1’000 m for SM 500 m - 1’000 m for SM
(1) Connection (Loss 0.4 dB) (1) Connection (Loss 0.4 dB) Reading an OTDR Trace Launch Cable Horizontal Segment Backbone Segment Receive Cable Link being tested OTDR Trace Patch Cord Splice (1) Connection (Loss 0.4 dB) A B -1 (1) Connection (Loss 0.4 dB) Backbone Segment Horiz. Seg. (2) Connections (Loss 0.8 dB) Link Loss ( 2.1 dB) Relative Power (dB) -2 OTDR screen Splice (Loss 0.1 dB) -3 Rcv. Cable Launch Cable -4 Link Length ( 130 m) 250 50 100 150 200 Distance (m)
Other FO measurements Bandbreite The bandwidth is measured by the manufacturer of the fiber and guaranteed. Some cable manufacturer test this occasionally. There is no point to test in the field or it is very expensive. Polarisationsmoden Dispersion (PMD) Only for Single mode application Channel length > 2 km