Installation and testing

Slides:



Advertisements
Similar presentations
© DIAMOND Headquarters / F-3000 r & rs / / 1 WERE WELL CONNECTED F-3000 r & F-3000 rs connectors.
Advertisements

1 Time Domain Reflectometer TECHTRONIX. 2 Time Domain Reflectometer INTRODUCTION Transmission Line Discontinuities VOP, Velocity of Propagation How a.
OPTICAL FIBRE : TESTS AND MEASUREMENTS. BY TX-I FACULTY A.L.T.T.C; GHAZIABAD.
Chapter Twenty-Four: Fiber Optics
Fiber Optic Communication Systems
Fiber Optics Types Optical fibers are manufactured in three main types: Multi Mode step-index, Multi Mode graded-index, and Single Mode.
© DIAMOND SA / X-BEAM / / 1 X-BEAM Connector Up to 4 channels SM and MM optical connections based on Expanded Beam technology.
Session 4: Termination and Splices. 2 FO Connectors Specifications Specifications Loss Repeatability Environment (temp, humidity, vibration, etc.) Reliability.
© DIAMOND SA / Titan und Krokodil / / 1 © DIAMOND Headquarters / E-2000™ & F-3000™ PS / / 1 DIAMOND Power Solution Fiber optic interface for.
Sep 19th THE PRESENTATION Introduction This presentation has 2 parts Part 1 :is about giving a broad idea about the concepts of Optical Fiber and.
Chromatic Dispersion Measurement methods  Pulse Delay Method (time-of-flight) ‏ IEC / ITU-T G650.1 EIA/TIA-455- FOTP-175-B  Phase Shift Method.
Physical Transmission Media 8 5/9/ Modified by: Brierley.
Pursuit of Better testing Instrument Let's go in the grandway......
Fiber Optics BASIC FIBER OPTIC LINK.
1 LIGHT EMISSION / DETECTION Lasers and LED Passive Elements Piotr Turowicz Poznan Supercomputing and Networking Center Training.
Fault Localization of PON Yeung Chue Hei ( ) Lam Yi Kwan ( )
Optical Reflection Measurements Lecture-3. Optical Reflection Measurements Total Return Loss Technique A total return-loss measurement results in a single.
Optical Fiber Testing Paul Minko EE 566 Oct. 22, 2003.
Optical Network Link Budgets EE 548 Spring Reference Model.
Fiber-Optic Communications
OPTICAL MEASUREMENT DEVICES PRESENTED BY POOJA.P. NIKHIL SHARMA POOJA PRASAD RAJNEESH YADU ANNAPURNA CHANDRAKAR.
Content :  Indoor fiber optic cables  The benefits of indoor Fiber Optic Cable  The features of indoor Fiber Optic Cable  Tight-Buffered Cable  Consists.
TESTING MULTIMODE FIBER
Testing Optical Fiber Links
Chapter 10 Optical fiber measuring instruments and testing single-mode fiber networks.
1 Fiber Optic Measurement Technique Piotr Turowicz Poznan Supercomputing and Networking Center Training Session Kiev 9-10 October.
Qualified Partner Program R&Mfreenet fiber - LAN F.O. installation cable Felice Guarna, Training Program Manager Wetzikon, January 2006.
Fiber Optic Basics. Why fiber? – Low loss & low signal spreading means greater distances between expensive repeater stations. – Less weight means easier.
FIBER OPTIC SYSTEM DESIGN
L5 Optical Fiber Link and LAN Design
OPTICAL TIME DOMAIN REFLECTOMETER (OTDR)
Testing Fiber Optic Media Last Update
© Fluke NetworksVisiFault L&L June 2004 VisiFault Visual Fault Locator (VFL) New tool traces fiber, verifies continuity and polarity, helps find breaks.
Network IQ Training Manual Chapter 6 - Fibre Testing and Measurement
1 Guide to Network Cabling Fundamentals Chapter 8.
Poznan Supercomputing and Networking Center
Fiber Optics LINK LOSS BUDGET.
Certified Fiber Optic Training
1 Optical Time Domain Reflectometer Piotr Turowicz Poznan Supercomputing and Networking Center 9-10 October 2006.
Cisco 1 - Networking Basics Perrine. J Page 19/3/2015 Chapter 3 Which of the following correctly describes the type of signal that the network media carries?
Page 1 © 2008 IDEAL INDUSTRIES IDEAL Micro OTDR Oktober 2008 Konstantin Hüdepohl.
1 §5 Multiplexed and distributed sensors 1.Basic sensor array topologies 2.Time division multiplexing (TDM) 3.Wavelength division multiplexing (WDM) 4.Optical.
Optical Media Explain the basics of fiber-optic cable. Describe how fibers can guide light for long distances. Describe multimode and single-mode fiber.
FIBER PROPERTIES Transmission characteristics of a fiber depends on two important phenomena Attenuation Dispersion Attenuation or transmission loss Much.
Optical Fiber Connections joints and couplers
Physical Transmission Media Chapter 8. Objectives In this chapter, you will learn to: Identify the characteristics of wireline transmission Describe the.
 What is fiber-optic communication?  Method of transmitting information from one place to another  Sending pulses of light through optical fiber 
A Company Selling Technology and not just a Product.
SIGNAMAX CABLING SYSTEM COMPONENTS. TRANSMISSION MEDIA Twisted Pair.
CHAPTER 7 SYSTEM DESIGN. Transmission Types Two types of transmissions: - Link (point to point) - Network -point to multipoint -Mesh -Ring.
Fiber Optic Cable Testing
Optical Loss Budget (Example 2)
CABLING SYSTEM INSTALLATION. Installation Quality The quality of installation is the most serious problem in implementation of the telecommunications.
SIGNAMAX CABLING SYSTEM COMPONENTS. TRANSMISSION MEDIA Twisted Pair.
CABLING SYSTEM INSTALLATION. Installation Quality The quality of installation is the most serious problem in implementation of the telecommunications.
OTDR “How To Demo” Training
Lecture 4. Pulse Propagation in Fibers Problem: Inject an optical pulse of width  0 into the fiber at z = 0. What is the speed of propagation and what.
CABLING SYSTEM CERTIFICATION TESTING. TWISTED-PAIR CABLING TESTING.
Image: digikey.com 5 Image:
Application Note Fiber Connectivity Riedel solutions for broadcast applications 1 Application Note - Fiber Connectivity.
Fiber Optic Testing Optical Educational Seminar Tim Percival EXFO 18 th February 2016 BICSI Breakfast Meeting Lagos, Nigeria.
3 Fiber-Optic Cable Permission granted to reproduce for educational use only.© Goodheart-Willcox Co., Inc. Objectives  Explain how fiber-optic cable.
UPM, DIAC. Open Course. March MEASURES 7.1 Attenuation 7.2 OTDR.
More stuff to know… MODULE 10
Chapter 7 Basic System Design.
Introduction to Computers
Fiber Optics 3 Losses and Testing
Chapter 7 Basic System Design.
Guidelines for Fiber Optic Design and Installation
Wired and Wireless Troubleshooting
Presentation transcript:

Installation and testing Titelseite September 2013

Safety Potential sources of risk: Active component (Laser) Injury of eyes and skin Fiber stub (cleaved fiber) Consumables Chemicals and its vapor

Cable deployment Indoor Outdoor Latter buried aerial under water Duct direct direct Conduit Duct

Installation methodology Installation methodology depends on type of cable, distance, application and environment wrapped laying pulling blowing aerial

Cable storage Storage Cable and accessories Installation Temperature accor. data sheet Pulling force accor. data sheet Crush resistance accor. data sheet Bending radius accor. data sheet Mehr Infos in den Installations- und Testrichtlinien (Grantieprogramm)

Connector cleaning source:JDSU Finger print Contamination Clean

End face Small parts on the fiber core cause significant return loss (RL) and insertion loss (IL) Contamination Light (RL) (IL)

Cleaning – Ferrule/end face Contaminated end face / fiber core impress of dust parts when connecting Permanent damage on fiber core

Cleaning - Sleeve Contaminated sleeve Dust pushed during plug in of connector Dust ring on ferrule and potentially fiber core

Testing Titelseite September 2011

Inspection/verification test Equipment Power Meter & Light source OTDR Fiber/Connector inspection Visual fault locator Total optical loss  Reflection Link characteristic Visuelle inspection

Visual inspection Connector Contamination Damage Identification Fiber break Bending Faulty connection

Measurement principales Power meter Light source Power Meter Power Meter Light source Stecker Stecker Rückstreumessung (OTDR) OTDR OTDR Stecker Stecker

Power budget calculation OF-500 Connection Splice 200 m 50 m 250 m PMD Component ISO11801 “state of the art” Fiber OM3 3.5db/km 1.75dB 2.8dB/km) 1.40dB Connector 0.75dB/Steck 2.25dB 0.5dB/Steck 1.50dB Fusion splice 0.3dB/Spl 0.30dB 0.1dB/Spl 0.10dB Dämpfung Gesamt 4.30dB 3.00dB Berechnung Dämpfungswert OM3 bei 850nm Channel attenuation for OF-500 at 850nm -> 3.25dB

Power measurement – level setting 1. Reference measuring Transmitter Test cable 1 Receiver Test cable 2 Adjust: Attenuation = 0 dB

Power measurement – link evaluation 2. Measuring the system’s attenuation Transmitter Receiver LWL - Anlage Total attenuation [dB] Test result Attenuation = 2.1 dB

Power measurement testing Methodology according ISO/IEC 61280-4 C Licht quelle S Launch cable Power meter D Test Jumper Methodology 3 - Kanal Methodology 1 - CP Methodology 2 - PL Depending on the reference measurement (1, 2 or 3 test jumper) a different result will be achieved. ISO/IEC 61280-4 Methode 2 is equal to EN50346 – Methode 1

Error reduction: Mandrel wrap principle 50 m mandrel  18 mm for 3 mm jumpers 62.5 m mandrel  20 mm for 3 mm jumpers 9 m N.A. Test jumper length 1 m to 5 m 5 wraps Launch cord Mandrel This “mode filter” causes high bend loss in loosely coupled modes and low loss in tightly coupled modes. Thus the mandrel removes all loosely coupled modes generated by an overfilled launch in a short (cords) link used during the reference setting Mandral wrap may reduce the insertion loss by: up to 0.5dB – 62.5 m up to 0.9dB – 50 m

Optical Time Domain Reflectometer OTDR Impuls- generator Light source Beam splitter LWL t bei der OTDR Messung wird ein Laserpuls der Dauer von 3ns bis 20µs in einen Lichtwellenleiter eingekoppelt und das Rückstreulicht über der Zeit gemessen Measuring delay Receiver Evaluation optical Signal electrical Signal

OTDR measuring Rayleigh scattering and Fresnel reflections A light pulse propagates in an optical waveguide. OTDR The light pulse is partly reflected by an interfering effect. OTDR OTDR The reflected light pulse is detected by the OTDR. bei der OTDR Messung wird ein Laserpuls der Dauer von 3ns bis 20µs in einen Lichtwellenleiter eingekoppelt und das Rückstreulicht über der Zeit gemessen Rayleigh scattering and Fresnel reflections

An example of an OTDR waveform Fusion- Connector Fiber Mech. Fiber- splice bend splice end OTDR Attenuation (dB) Distance (km)

OTDR Pulse length in fiber OTDR pulse width OTDR Pulse length in fiber OTDR Pulse Larger pulse width: More power, larger dynamic range Shorter pulse width: better resolution, dynamic range reduced due to more incidents recognized. Pulsweite beeinflußt Ereignis-Totzonen Ein von OTDR ausgesendeter Puls hat eine entsprechende physikalische Länge (Energiegehalt) Solange die Pulslänge kürzer ist als der Abstand zwischen einem Ergeignis und dem ihm folgenden, kann das folgende Ereignis detektiert werden (Ereignis-Totzone) Kürzere Pulse haben aber weniger Energie und die effektive Dynamik wird dadurch reduziert Es gilt die optimale Mittelung für beide Gegebenheiten zu finden

Dynamic range of an OTDR PMAX Backscatter level at OTDR test port dB Dynamic Range  Measurement Range Noise floor km

Attenuation- & event dead zone OTDR Ideal trace of a reflected event with shortest pulse width, PMIN 1.5 dB Measured OTDR trace 0.5 dB PMIN Event dead zone Attenuation dead zone

Power measuring with OTDR Test set up FO system under test 1) 2) 1) launching fiber 2) launching fiber 200 m - 500 m for MM 200 m – 500 m for MM 500 m - 1’000 m for SM 500 m - 1’000 m for SM

(1) Connection (Loss  0.4 dB) (1) Connection (Loss  0.4 dB) Reading an OTDR Trace Launch Cable Horizontal Segment Backbone Segment Receive Cable Link being tested OTDR Trace Patch Cord Splice (1) Connection (Loss  0.4 dB) A B -1 (1) Connection (Loss  0.4 dB) Backbone Segment Horiz. Seg. (2) Connections (Loss  0.8 dB) Link Loss ( 2.1 dB) Relative Power (dB) -2 OTDR screen Splice (Loss  0.1 dB) -3 Rcv. Cable Launch Cable -4 Link Length ( 130 m) 250 50 100 150 200 Distance (m)

Other FO measurements Bandbreite The bandwidth is measured by the manufacturer of the fiber and guaranteed. Some cable manufacturer test this occasionally. There is no point to test in the field or it is very expensive. Polarisationsmoden Dispersion (PMD) Only for Single mode application Channel length > 2 km