Physics and Physical Measurement

Slides:



Advertisements
Similar presentations
Measurement and the Factor Label Method
Advertisements

Measurements Scientific Notation Significant Figures
Measuring and Recording Data. developed in France in 1795 a.k.a. “SI”-International System of Units a.k.a. “SI” - International System of Units The U.S.
DATA.
Units and Dimensional Analysis. Chapter 3 - Goals 1. Know and understand the metric system. 2. Be able to use units in performing mathematical operations.
Metric System. SI System Standard International System of measurement – metrics Has seven base units and many other units derived from these seven.
Group Activity Measurement. Measure assigned objects with the use of the following devices:
Numbers and Measurement measurements often very small or very large to handle these numbers, we use scientific notation.
DATA. There is no such thing as absolute certainty of a scientific claim. The validity of a scientific conclusion is always limited by: the experiment.
Physics Section 1.2 The system of measurement used in science is the SI system. (Système International d'Unites) SI Standards Quantity Unit Symbol length.
12 Physics Lesson #1 Physics studies fundamental questions about two entities. What are these two entities?
IB Physics C.D.Cameron International School of Geneva.
Math in Physics Math skills are essential to physics.
12 Physics Lesson #1 Physics studies fundamental questions
Units and Measurement Chemistry Mrs. Coyle.
Systems of Measurement
Chapter 2 Preview Objectives Units of Measurement SI Measurement
Measurements and Calculations
SI Measurement System.
Units and Measurement.
2015 Physics WoF Start the year right with a .
Units of Measurement.
CHEMISTRY 161 Chapter 3 Measurements.
Units and Measurement.
Units of Measurement What are some different ways of measuring a person’s height? There are two major systems of units used today. Which one do we use.
Lab Skills Physical Quantities Uncertainty SI Units Prefixes
Introduction: Matter and Measurement
Systems of Measurement
Units of Measurement What are some different ways of measuring a person’s height? There are two major systems of units used today. Which one do we use.
SI Measurement System Presentation Name Course Name
II. Units of Measurement (p )
Measurement I. Units of Measurement Number vs. Quantity
MEASURING.
Ch. 1- Measurement I. Units of Measurement Number vs. Quantity
Units and Measurement.
Lab Skills Physical Quantities Uncertainty SI Units Prefixes
DATA.
SI Measurement System.
INTERNATIONAL SYSTEM (SI) OF MEASURE
Physics and Mechanics Physics deals with the nature and properties of matter and energy. Common language is mathematics. Physics is based on experimental.
MEASUREMENT Units of Measurement C. Johannesson.
Ch. 2 - Measurement I. Units of Measurement Number vs. Quantity
Metric System.
Measurement Way of assigning a number to a characteristic of an object so it can be compared; always has a unit.
Introduction Which of the following professionals (專業人仕) need knowledge (知識) of physics? Medical Doctor (醫生) Accountant (會計師) Civil Engineer (土木工程師)
Dimensional Analysis, Significant Figures, & the Metric System
Metrics & SI Units.
International System of Measurement
ACCURACY AND PRECISION
The International System of Units (SI)
Measurement I. Units of Measurement Number vs. Quantity
II. Units of Measurement (p. 12)
Chapter Two: Introduction to Engineering Calculations
Making Measurements.
Scientific Measurement
SI Measurement System Introduction to Engineering Design
Ch. 2 - Measurement I. Units of Measurement (p.34-45)
Qualitative vs. Quantitative Observations
Measurement I. Units of Measurement Number vs. Quantity
ACCURACY AND PRECISION
Introduction Which of the following professionals (專業人仕) need knowledge (知識) of physics? Medical Doctor (醫生) Accountant (會計師) Civil Engineer (土木工程師)
THE METRIC SYSTEM.
Measurement Units of Measurement Number vs. Quantity
2016 Physics WoF Start the year right with a .
II. Units of Measurement
SI Measurement System.
Units and Measurement Physics Mr. Berman
SI Measurement System.
Measurements and Calculations
Scientific Measurements
Presentation transcript:

Physics and Physical Measurement Topic 1 Physical quantities and units

Learning outcomes (a) show an understanding that all physical quantities consist of a numerical magnitude and a unit (b) recall the following SI base quantities and their units: mass (kg), length (m), time (s), current (A), temperature (K), amount of substance (mol) (c) express derived units as products or quotients of the base units and use the named units listed in this syllabus as appropriate (d) use base units to check the homogeneity of physical equations (f) use the following prefixes and their symbols to indicate decimal submultiples or multiples of both base and derived units: pico (p), nano (n), micro (μ), milli (m), centi (c), deci (d), kilo (k), mega (M), giga (G), tera (T) (g) make reasonable estimates of physical quantities included within the syllabus

For your notes All physical quantities have a magnitude and a unit Base units are: mass (kg) length(m) time (s) current (A) temperature (K) amount of substance (mol) Express derived units in terms of the base units Use the SI units

Standards of Measurement SI units are those of the Système International d’Unités adopted in 1960 Used for general measurement in most countries Scientists and engineers need to make accurate measurements so that they can exchange information To be useful a standard of measurement must be Invariant, Accessible and Reproducible

Fundamental dimensions There are seven fundamental dimensions. A base unit is accurately defined for each quantity. They are: Length metre m Mass kilogram kg Time second s Electric current ampere A Thermodynamic temp Kelvin K Amount of a substance mole mol Luminous intensity candela Cd

Derived Quantities Speed, force , energy etc. are not base quantities. Derived units allow us to measure any quantity. Derived quantities are combinations of the fundamentals e.g. speed average speed = distance/time So the derived unit is meters per second We write derived units in the form ms-1 not m/s

Figuring out derived units Write out an equation for the quantity you want to know the units of. ( The defining equation is best) eg Pressure = F/A Rewrite the equation substituting units for quantities Eg [Pa]=[N] / [m2] or [N] [m-2] Check if units are base units m-2  Repeat process for any none base units F=ma [N] = [kg] [m] [s-2] all base units So…….. [Pa]= [N] [m-2] = [kg] [m] [s-2] [m-2] Simplified [Pa]= [kg] [s-2] [m-1]

Practise Try these Velocity Density Work Power Resistance

Writing Units two examples A car has a velocity of 10ms-1 Notes Do not use m/s Meters and seconds are SI units A metal has a density of 5Kgm-3 Kg not g is the SI unit Per m3 is written m-3

Some Derived Units Acceleration ms-2 Angular acceleration rad s-2 Momentum kgms-1 or Ns Others have specific names and symbols Force kg ms-2 or N Pressure kgm-1s-2or Pa Resistance kgm2A-2s-3 or Ω Of course there are so many things out there to measure there are many more.

Summary questions What are the base quantities? What are the base units? Give 5 derived units What is a volume of 1m3 in cm3? What is a pressure of 1Ncm-2 in Pa? State 2 problems with this reading and rewrite it correctly: Speed= 39 mph

Can you? State the fundamental units in the SI system. Distinguish between fundamental and derived units Give examples of derived units. Convert between different units of quantities. State units in the accepted SI format.