Integrator Op Amp Amplifier

Slides:



Advertisements
Similar presentations
Operational Amplifiers
Advertisements

Operational Amplifiers 1. Copyright  2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith2 Figure 2.1 Circuit symbol.
1 Electronic Circuits OP AMPs. 2 Electronic Circuits Operational amplifiers are convenient building blocks that can be used to build amplifiers and filters.
INTRODUCTION With this chapter, we begin the discussion of the basic op-amp that forms the cornerstone for linear applications; that is, the signal is.
Greg Henderson Abdul Jaroudi Nishanth Mehanathan.
Describe and analyze the operation of several types of comparator circuits. Describe and analyze the operation of several types of summing amplifiers.
Figure 1.17 Model of an electronic amplifier, including input resistance Ri and output resistance Ro. © 2000 Prentice Hall Inc.
Non-Ideal Characteristics Input impedance Output impedance Frequency response Slew rate Saturation Bias current Offset voltage.
Ref:080114HKNOperational Amplifier1 Lecture 1 Op-Amp Introduction of Operation Amplifier (Op- Amp) Analysis of ideal Op-Amp applications Comparison of.
Announcements Troubles with Assignments… –Assignments are 20% of the final grade –Exam questions very similar (30%) Deadline extended to 5pm Fridays, if.
Experiment 4 * Part A: Introduction to Operational Amplifiers
Operational amplifier
ECE 201 Circuit Theory I1 Introduction to the Operational Amplifier μA 741 OP AMP.
* Operational Amplifiers * Op-Amp Circuits * Op-Amp Analysis
Operational Amplifier
Operational Amplifiers
1 ECE 3336 Introduction to Circuits & Electronics MORE on Operational Amplifiers Spring 2015, TUE&TH 5:30-7:00 pm Dr. Wanda Wosik Set #14.
Introduction to Op Amps
Content Op-amp Application Introduction Inverting Amplifier
Operational Amplifiers David Lomax Azeem Meruani Gautam Jadhav.
Introduction to Op Amp Circuits ELEC 121. April 2004ELEC 121 Op Amps2 Basic Op-Amp The op-amp is a differential amplifier with a very high open loop gain.
Analog Electronics Lecture 5.
OSCILLATORS.
Chapter 8 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
electronics fundamentals
Inverting Amplifier. Introduction An inverting amplifier is a type of electrical circuit that reverses the flow of current passing through it. This reversal.
Chapter 19 Electronics Fundamentals Circuits, Devices and Applications - Floyd © Copyright 2007 Prentice-Hall Chapter 19.
Differential Amplifier
Data Acquisition ET 228 Op –Amp Applications Subjects Covered Overview of OP Amp Applications High Resistance Voltmeters Phase Shifter Circuit Integrators.
Agenda and Notes Today, during class! 9:30 a.m. Boeing Space and Intelligence Systems (Matt and Matt) 4 extra credit assignments available at the bottom.
09/16/2010© 2010 NTUST Today Course overview and information.
© 2012 Pearson Education. Upper Saddle River, NJ, All rights reserved. Electronic Devices, 9th edition Thomas L. Floyd Electronic Devices Ninth.
Microprocessor Interface
Lecture 1 Op-Amp Introduction of Operation Amplifier (Op- Amp) Analysis of ideal Op-Amp applications Comparison of ideal and non-ideal Op-Amp Non-ideal.
EE445:Industrial Electronics. Outline Introduction Some application Comparators Integrators & Differentiators Summing Amplifier Digital-to-Analog (D/A)
Microelectronic Circuits, Sixth Edition Sedra/Smith Copyright © 2010 by Oxford University Press, Inc. C H A P T E R 02 Operational Amplifiers.
10/11/2015 Operational Amplifier Characterization Chapter 3.
ECE 342 – Jose Schutt-Aine 1 ECE 342 Solid-State Devices & Circuits 18. Operational Amplifiers Jose E. Schutt-Aine Electrical & Computer Engineering University.
Module 4 Operational Amplifier
1 Fundamentals of Microelectronics  CH1 Why Microelectronics?  CH2 Basic Physics of Semiconductors  CH3 Diode Circuits  CH4 Physics of Bipolar Transistors.
OPERATIONAL AMPLIFIERS. BASIC OP-AMP Symbol and Terminals A standard operational amplifier (op-amp) has; V out is the output voltage, V+ is the non-inverting.
Introduction to Operational Amplifiers
EENG 2610: Circuit Analysis Class 11: Capacitor and Inductor Combinations RC Operational Amplifier Circuits Oluwayomi Adamo Department of Electrical Engineering.
1 Op-Amp Imperfections in The Linear Range of Operations Gain and Bandwidth Limitations  Ideal op amps have infinite open-loop gain magnitude (A oL is.
Lecture 4: Electrical Circuits
Operational Amplifiers The operational amplifier, also know as an op amp, is essentially a voltage amplifier with an extremely high voltage gain. One of.
Non - Inverting Amplifier
1 1.6 Op-Amp Basics Basic Op-Amp Op-amp equivalent circuit Practical (R i = high, R o = small)Ideal (R i =∞, R o = 0)
Applications of OP-AMP. Introduction Operational amplifier using IC's is inexpensive, versatile and easy to use. For this reason they are used not only.
Op-amp used as a summing amplifier or adder It is possible to apply more than one input signal to an inverting amplifier. This circuit will then add all.
1 Operational Amplifiers n Ideal Op-Amp –input terminals –differential gain, open-loop gain.
3/19/2016 Subject Name: LINEAR IC’s AND APPLICATIONS Subject Code:10EC46 Prepared By: Kumutha A Department: Electronics and Communication Date:
Analogue Electronics Higher Physics Unit 2 Electricity And Electronics Introduction to Op-Amps.
1 Chapter 8 Operational Amplifier as A Black Box  8.1 General Considerations  8.2 Op-Amp-Based Circuits  8.3 Nonlinear Functions  8.4 Op-Amp Nonidealities.
PRESENTATION ON:  Voltage Amplifier Presentation made by: GOSAI VIVEK ( )
OPERATIONAL AMPLIFIERS + - Presented by D.Satishkumar Asst. Professor, Electrical & Electronics Engineering
EE101-Lecture 8 Operational Amplifier Basics of amplifiers EE101 Fall 2012 Lect 8- Kang1 Noninverting amplifier & Inverting amplifier.
1 Operational Amplifiers 1. 2 Outlines Ideal & Non-ideal OP Amplifier Inverting Configuration Non-inverting Configuration Difference Amplifiers Effect.
Operational Amplifiers 1. Copyright  2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith2 Figure 2.1 Circuit symbol.
CHAPTER 20 OPERATIONAL AMPLIFIERS (OP-AMPS). Introduction to operational amplifiers Symbol and Terminals.
An operational amplifier (Op-Amp) is a differential amplifier that amplifies the difference of voltages applied to its two input terminals (differential.
Module 2 Operational Amplifier Basics
 The differentiator or differentiating amplifier is as shown in figure.  This circuit will perform the mathematical operation of differentiation.
DR. S. & S. S. GANDHY COLLEGE OF ENGINEERING AND TECHNOLOGY
Differential Op - Amplifier TIM. 1 Introduction 2 Differential Amplifier: 2.1 Input Resistances: 2.2 Differential Gain: 2.3 Common Mode Input: 2.4 Common.
Operational Amplifiers
OP-AMPS: basics & Inverting-amplifier
Industrial Electronics
Content Op-amp Application Introduction Inverting Amplifier
Presentation transcript:

Integrator Op Amp Amplifier M.S.P.V.L. Polytechnic College, Department of ECE & EEE, Pavoorchatram.

Introduction An integrator op amp (operational amplifier) is one type of op amp circuit. The Integrator operational amplifier circuit performs the mathematical operation of Integration. The magnitude of its output is determined by the length of time a voltage is present at its input. The output voltage is proportional to the length of time a voltage is present. The longer the input is present, the greater the output becomes. One great application of the integrator is generating a ramp voltage.

We can build a circuit that will integrate voltage: The output signal is a scaled and inverted integral of the input signal:

Cont.., There is a problem with this circuit though—the integrator is only good if the Vout is less than the maximum output voltage of the op-amp. Our integrator is thus not very useful for low frequency signals, because the charge will store up on the capacitor and eventually saturate the op-amp. Even if we have a high frequency signal, any DC offset will add up in the capacitor over time. We can remedy this problem by adding a shunt resistor Rs across the capacitor to bleed off any long-term charges that store up in the capacitor. As a rule of thumb, Rs should be greater than 10R1.

Cont.., Input bias current flowing through R1 and Rs can generate a small DC offset, and we can try to cancel it out by adding another resistor R2 between the non-inverting input and the ground such that

Integrator Op Amp Amplifier Circuit Diagram

The Integrator Amplifier is an operational amplifier circuit that performs the mathematical operation of Integration, that is we can cause the output to respond to changes in the input voltage over time and the integrator amplifier produces a voltage output which is proportional to that of its input voltage with respect to time. In other words the magnitude of the output signal is determined by the length of time a voltage is present at its input as the current through the feedback loop charges or discharges the capacitor.

When a voltage, Vin is firstly applied to the input of an integrating amplifier, the uncharged capacitor C has very little resistance and acts a bit like a short circuit (voltage follower circuit) giving an overall gain of less than 1, thus resulting in zero output. As the feedback capacitor C begins to charge up, its reactance Xc decreases and the ratio of Zf/Rin increases producing an output voltage that continues to increase until the capacitor is fully charged. At this point the ratio of feedback capacitor to input resistor (Zf/Rin) is infinite resulting in infinite gain and the output of the amplifier goes into saturation as shown below. (Saturation is when the output voltage of the amplifier swings heavily to one voltage supply rail or the other with no control in between).

Cont.., The rate at which the output voltage increases (the rate of change) is determined by the value of the resistor and the capacitor, "RC time constant". By changing this RC time constant value, either by changing the value of the Capacitor, C or the Resistor, R, the time in which it takes the output voltage to reach saturation can also be changed for example. If we apply a constantly changing input signal such as a square wave to the input of an Integrator Amplifier then the capacitor will charge and discharge in response to changes in the input signal. This results in the output signal being that of a sawtooth waveform whose frequency is dependant upon the RC time constant of the resistor/capacitor combination. This type of circuit is also known as a Ramp Generator .

Ramp Generator

Since the node voltage of the integrating op-amp at its inverting input terminal is zero, the current Iin flowing through the input resistor is given as: The current flowing through the feedback capacitor C is given as: Assuming that the input impedance of the op-amp is infinite (ideal op-amp), no current flows into the op-amp terminal. Therefore, the nodal equation at the inverting input terminal is given as:

From which we have an ideal voltage output for the Integrator Amplifier as: This can also be re-written as: Where jω = 2πƒ and the output voltage Vout is a constant 1/RC times the integral of the input voltage Vin with respect to time. The minus sign (-) indicates a 1800 phase shift because the input signal is connected directly to the inverting input terminal of the op-amp.

The AC or Continuous Integrator If we changed the above square wave input signal to that of a sine wave of varying frequency the Integrator Amplifier begins to behave like an active "Low Pass Filter", passing low frequency signals while attenuating the high frequencies. However, at DC (0Hz) the capacitor acts like an open circuit blocking any feedback voltage resulting in zero negative feedback from the output back to the input of the amplifier. Then the amplifier effectively is connected as a normal open-loop amplifier with very high open-loop gain resulting in the output voltage saturating. The addition of a large value resistor, R2 across the capacitor, C gives the circuit the characteristics of an inverting amplifier with finite closed-loop gain of Rf/Rin at very low frequencies while acting as an integrator at higher frequencies.

The AC Integrator with DC Gain Control