Renaissance of the Plastic Age Polymers for Electronics & Photonics T.P.Radhakrishnan School of Chemistry, University of Hyderabad Hyderabad 500 046, India tprsc@uohyd.ernet.in http://chemistry.uohyd.ernet.in/~tpr/ This file is available at http://chemistry.uohyd.ernet.in/~ch521/
Materials and civilisation (Before 5000 BC) Stone age (5000 - 3000 BC) Copper age (3000 - 800 BC) Bronze age (800 BC - 40 AD) Iron age Plastic age ?
Types of materials Molecular materials Metals / Alloys Ceramics * Ceramics Polymers Semiconductors Composites Biomaterials Molecular materials *Courtsey: W. D. Callister, Fundamentals of Materials Science and Engineering
Design of Molecular Materials Elements / Compounds Materials Chemical / Physical routes Molecules Crystals Thin films / LB films Polymers Nanostructures Chemical routes Chemical / Physical routes
Molecular materials / Polymers
Natural polymers
Synthetic polymers Polytetrafluoroethylene Polyethylene (Teflon) Phenol-formaldehyde (Bakelite) Polyethylene Polytetrafluoroethylene (Teflon) Polyhexamethylene adipamide (Nylon 6,6) Polyethyleneterephthalate (PET) Polycarbonate
Discovery of conducting polymers 1862 Lethby (College of London Hospital) Oxidation of aniline in sulfuric acid 1970’s Shirakawa (Japan) Acetylene gas Ti(OBu)4 & Et3Al Toluene –78oC Ti(OBu)4 & Et3Al Hexadecane 150oC silvery film trans-polyacetylene copper-coloured film cis-polyacetylene
Polyacetylene (PA) Electrical conductivity (s) cis PA 10-10 – 10-9 S cm-1 trans PA 10-5 – 10-4 S cm-1 For comparison : s (copper) ~ 106 S cm-1 : s (teflon) ~ 10-15 S cm-1
Doping leads to enhanced conductivity s ~ 10-5 S cm-1 Semiconductor + e- - e- s ~ 104 S cm-1 Metal
Discoverers - Nobel Prize 2000 A. Heeger, A. McDiarmid, H. Shirakawa (this photograph taken at the International Conference on Synthetic Metals, 2000, was kindly provided by Prof. Heeger)
Polyacetylene - electronic structure -electronic energy levels and electron occupation (a) ethylene (b) allyl radical (c) butadiene (d) regular trans-PA (e) dimerised trans-PA
How does a conducting polymer work ? Oxidative doping of polyacetylene by iodine Polaron and its delocalisation
Excitations Bipolaron Neutral Soliton Positive Soliton
Examples of conducting polymers
Electrical conductivities Copper Platinum Bismuth Graphite 10+6 10+4 10+2 100 10-2 10-4 10-6 10-8 10-10 10-12 10-14 10-16 10-18 S cm-1 Conducting Polymers Germanium Silicon Polyethylene Diamond Quartz
Synthesis of PANI Cathode Anode (ITO plate) Aniline + dil. HCl Instead of electrochemical oxidation, chemical oxidation may be carried out : Aniline + acid + oxidising agent ((NH4)2S2O8)
Voltage (~ 0.3 - 0.5 V) applied
Result of electropolymerisation The green coating on the ITO electrode is due to the formation of emeraldine salt form of PANI
Polyaniline (PANI) Leucoemeraldine Colorless Emeraldine base Blue (Insulator) Emeraldine base Blue (Insulator) Emeraldine salt Green (Conductor) Purple (Insulator) Pernigraniline Oxidation
Applications of conducting polymers Polyaniline (PANI) Transparent conducting electrodes Electromagnetic shield Corrosion inhibitor ‘Smart windows’ (electrochromism) Polypyrrole (Ppy) Radar-invisible screen coating (microwave absorption) Sensor (active layer) Polythiophene (PT) Field-effect transistor Anti-static coating Hole injecting electrode in OLED Polyphenylenevinylene (PPV) Active layer in OLED
Polypyrrole - conductivity switching
Enzyme Biosensor Using PPy Glucose oxidase -D-glucose + ½O2 + H2O D-gluconic acid + H2O2 H2O2 + 2HCl + Ppy 2H2O + Ppy2+.2Cl-
PANI-PSS PSSn-(100 kDa) RT = 8.3x10-2 Scm-1 PSSn-(70 kDa)
Sensors Typical example : Ammonia sensing by PANI-PSSM film Resistance change with time Ammonia in Ammonia out
NH3 Constant Vacuum Two-way switch Digital Voltmeter Current Source Rotary Vacuum Pump Two-way switch Digital Voltmeter NH3 Vacuum FAN 10 V Battery
Resistance change at 150 sec. for different concentrations of ammonia
Electroluminescence - Electric field + Light Metal electrode Organic thin film Transparent electrode (ITO) Light Electric field
Principle of EL Cathode Anode e- HOMO LUMO HOMO LUMO Light h+
Polymers for Organic Light Emitting Diodes (OLED) PPV MEH-PPV Commercial materials like Mn2+ in ZnS require 100V DC PPV : requires 5 - 10V DC runs even with AC brightness ~40,000 cd/m2 ie. ~100 times brighter than a TV screen
Organic LED driven by organic transistor Ca/Ag MEH/PPV Silica Gold P3HT n+-Silicon Aluminium G D S
Electrochromic devices Polymer Undoped Doped Polythiophene Red Blue Polypyrrole Yellow-green Blue-black Polyaniline Yellow Green/Blue Viewing side Li anode Polymer electrolyte Conducting polymer ITO electrode V
On application of voltage Viewing side Li anode Polymer electrolyte Conducting polymer ITO electrode V
Conjugated polymers for nonlinear optics NLO materials interact with light Polydiacetylene ( ) n Light changes the material properties Changes the properties of the light
Photonic Application of Conducting Polymers - Kerr gate Polariser Laser 1 Crossed Polariser No light NLO (c(3)) polymer Laser 2 Laser 1 Polariser Crossed Polariser
All organic transistor Future Outlook All organic transistor
Plastic solar cell based on MDMO-PPV/PCBM (conducting polymer - fullerene composite) on flexible ITO coated PET
Thank you