Department of Interface Chemistry and Surface Engineering Electrocatalysis Group Düsseldorf, Germany International Conference on Combinatorial Materials.

Slides:



Advertisements
Similar presentations
Department of Chemical Engineering Nara National College of Technology Takanori KOBAYASHI, Atsuhiro KAWAMURA, Katsumi KATAKURA, Hirohisa YAMADA Electrochemical.
Advertisements

A galvanic cell is made from two half cells. In the first, a platinum electrode is immersed in a solution at pH = 2.00 that is M in both MnO 4 -
Filippo Parodi /Paolo Capobianco (Ansaldo Fuel Cells S.p.A.)
Materials for Electrochemical Energy Conversion
Electrochemical Energy Systems (Fuel Cells and Batteries)
Electrochemistry. It deals with reactions involving a transfer of electrons: 1. Oxidation-reduction phenomena 2. Voltaic or galvanic cell Chemical reactions.
Standard Reference Electrode Standard Hydrogen Electrode (SHE) SHE: Assigned V Can be anode or cathode Pt does not take part in reaction Difficult.
Types of Electrochemical Cells Electrolytic Cells: electrical energy from an external source causes a nonspontaneous reaction to occur Voltaic Cells (Galvanic.
Thermodynamics in Corrosion Engineering
ISSUES TO ADDRESS... Why does corrosion occur ? 1 What metals are most likely to corrode? How do temperature and environment affect corrosion rate? How.
Electroanalytical Chemistry
Development of an Electrochemical Micro Flow Reactor (EMFR) for electrocatalytic studies of methanol oxidation and fuel cell applications. Nallakkan Arvindan*,
Phenomenological Model of Electrochemically Active Surface Area Loss Mechanisms in the Cathode Catalyst Layer Steven G. Rinaldo, a,b Wendy Lee, b Jürgen.
1 DIRECT METHANOL FUEL CELL WITH EXTENDED REACTION ZONE ANODE Alex Bauer, Elöd L. Gyenge and Colin W. Oloman Department of Chemical and Biological Engineering.
Lecture 223/19/07. Displacement reactions Some metals react with acids to produce salts and H 2 gas Balance the following displacement reaction: Zn (s)
1 216 th ECS Meeting: October 8, 2009 Comparison of Inexpensive Photoanode Materials for Hydrogen Production Using Solar Energy N.Cook, R. Gallen S. Dennison,
Crack grows incrementally typ. 1 to 6 increase in crack length per loading cycle Failed rotating shaft --crack grew even though K max < K c --crack grows.
Biological and Catalytic Conversion of Biomass to Biofuels and Chemicals Jingguang Chen Chemical Engineering.
Electrochemistry Chapter 20.
Electrochemistry Chapter 11 Web-site:
The Nature of Molecules
Corrosion in active state Jacek Banaś J. Banaś, Corrosion Resistant Alloys. Fundamental Aspects of Material Selection, in Metallurgy on the Turn of the.
Chemistry. Session Electrochemistry - 2 Session Objectives Electrolysis Faradays Laws of electrolysis Electrode Potential Electromotive force Electrochemical.
Chapter 7 Electrochemistry §7.12 Basic principal and application of electrolysis.
Chapter 7 Electrode process of gas electrode Experimental observation of hydrogen evolution 1) 1905: Tafel equation :  c = a + b lg j j  current.
Thin Film & Battery Materials Lab. National Research Lab. Kangwon Nat’l Univ. Heon-Young Lee a, Seung-Joo Lee b, Sung-Man Lee a a Department of Advanced.
Chapter ISSUES TO ADDRESS... Why does corrosion occur ? What metals are most likely to corrode? How do temperature and environment affect corrosion.
CHAPTER 17: CORROSION AND DEGRADATION
§7.11 Polarization of electrode
Oxidation-Reduction Reactions LEO SAYS GER. Oxidation and Reduction (Redox) Electrons are transferred Spontaneous redox rxns can transfer energy Electrons.
Electrochemistry. Electrochemical Cells  Electrons are transferred between the particles being oxidized and reduced  Two types –Spontaneous = Voltaic.
GHS Honors Chem Electro- Chemistry. GHS Honors Chem Electrochemistry Electrochemistry is the study of the relationships between electrical energy and.
16-1 Voltammetry Electrochemistry techniques based on current (i) measurement as function of voltage (E appl ) Working electrode §(microelectrode) place.
Chemical Families. Groups of Elements   Lanthanides Li 3 He 2 C6C6 N7N7 O8O8 F9F9 Ne 10 Na 11 B5B5 Be 4 H1H1 Al 13 Si 14 P 15 S 16 Cl.
Chapter 7 Electrochemistry 7.1 Thermodynamic Properties of Electrolyte Solutions Electrolyte Strong electrolyte Weak el ectrolyte Real electrolyte.
Reduction- Oxidation Reactions (1) 213 PHC 10th lecture (1) Gary D. Christian, Analytical Chemistry, 6 th edition. 1.
Chemical and Materials Engineering Department, University of Cincinnati, Cincinnati, OH Nanoscale Ni/NiO films for electrode and electrochemical Devices.
Electroanalysis measure the variation of an electrical parameter (potential, current, charge, conductivity) and relate this to a chemical parameter (the.
Chapter 8 Bulk Electrolysis: Electrogravimetry and Coulometry.
Mitglied der Helmholtz-Gemeinschaft DEPOSITION OF CORROSION PREVENTING COATINGS FOR DUAL-ION BATTERIES Motivation The CV and CA diagrams confirm the electrochemical.
G. Lopes, A. Ferreira, A.P. Gonçalves and J.B. Branco Instituto Tecnológico e Nuclear, Estrada Nacional 10, Sacavém, Portugal Unidade de Ciências.
Electric energy Chemical energy Electrolysis Galvanic cell Chapter 8 Electrochemistry.
G. Lopes, A. Ferreira, A. P. Gonçalves and J. B. Branco Instituto Tecnológico e Nuclear, Estrada Nacional 10, Sacavém, Portugal Unidade de Ciências.
Unit 16 Electrochemistry Oxidation & Reduction. Oxidation verses Reduction Gain oxygen atoms 2 Mg + O 2  2 MgO Lose electrons (e - ) Mg (s)  Mg + 2.
Electron Screening in deuterated targets ©Francesco Raiola Raiola Francesco, Fakultät für Physik und Astronomie Ruhr-Universität Bochum, D Bochum,
Reactions of Metals. Reactions of Metals with H 2 O The metal is the anode and will be oxidized. 2H 2 O + 2e-  2OH - + H 2 E° = V Mg  Mg 2+ +
LOGO Water Gas Shift Reaction Over Au/Ce x Ti y O 2 Cheng Wan.
SCI3023 ELECTROCHEMISTRY Chapter 8e: Potentiometry
Chapter 7 Electrochemistry § 7.6 Reversible cell.
Electrochemistry f.
ELECTROCHEMISTRY CHEM171 – Lecture Series Four : 2012/01  Redox reactions  Electrochemical cells  Cell potential  Nernst equation  Relationship between.
Home Reading Skoog et al. Fundamentals of Analytical Chemistry. Sections 18A, 18C ( in chapter 18 ), Chapter 23.
Oxidation-Reduction Review. An oxidation-reduction reaction involves the transfer of electrons (e - ). Be able to recognize oxidation/reduction reactions.
Chapter 20 Electrochemistry
S2 SCIENCE CHEMICAL REACTIONS
Nat. Rev. Mater. doi: /natrevmats
Periodensystem Biomaterials Research - Manfred Maitz H He Li Be B C N
Reactions of Metals.
Leah G. Dodson, Michael C. Thompson, J. Mathias Weber
Underpotential Deposition
Electrochemistry.
Electrochemistry.
He-Qun Dai1,2, Hao Xu1,2, Yong-Ning Zhou2, Fang Lu1, and Zheng-Wen Fu
DETECTION LIMITS < 1 ppt ng/L 1-10 ppt ng/L ppt ng/L
January 2018 Electrochemistry Chemistry 30.
Electron Configurations and the Periodic Table
Electrochemical Reduction of CO2 Catalyzed by Metal Nanocatalysts
Electrochemistry Kenneth E. Schnobrich.
What is a redox reaction?
Presentation transcript:

Department of Interface Chemistry and Surface Engineering Electrocatalysis Group Düsseldorf, Germany International Conference on Combinatorial Materials Research, Ghent Jan–Philipp Grote, Aleksandar R. Zeradjanin, Serhiy Cherevko, Karl J.J. Mayrhofer Electrochemical CO 2 Reduction A Combinatorial High-Throughput Approach for Catalytic Activity, Stability and Selectivity Investigations

Max-Planck-Institut für Eisenforschung GmbH, Germany International Conference on Combinatorial Materials Research, Ghent Intro Motivation Electrolyte Ions Aqueos- / non-aqueous Electrolytes Solved gases pH Impurities Operation conditions Potential / current EC technique Temperature Catalyst Composition Morphology Surface oxide Deposition of impurities Additional analysis Dissolution Product evolution Motivation SFC SFC-ICP-MS SFC-OLEMS Conclusion

Max-Planck-Institut für Eisenforschung GmbH, Germany International Conference on Combinatorial Materials Research, Ghent Intro Scanning flow cell Electrolyte supply Counter electrode Electrolyte outlet Reference electrode Silicon sealing 2mm Working electrode Ar Channel diameter: 0.2/0.4/1/3 mm Flow rate: μl/min CE: Pt-wire or C-rod WE area: 0.13/0.25/1.1/10mm 2 RE: Ag/AgCl/3M KCl C. a. Laska et al., Electrochim. Acta, 159, 198–209 (2015) Motivation SFC SFC-ICP-MS SFC-OLEMS Conclusion

Max-Planck-Institut für Eisenforschung GmbH, Germany International Conference on Combinatorial Materials Research, Ghent Intro Fast screening of high surface area cats 0.5 mm 1 mm Motivation SFC SFC-ICP-MS SFC-OLEMS Conclusion

Max-Planck-Institut für Eisenforschung GmbH, Germany International Conference on Combinatorial Materials Research, Ghent Intro SFC - Fast Screening of Alloys Prof. Ludwig, Ruhr-Universität Bochum, Institute of Materials, Faculty of Mechanical Engineering 4-inch Si-wafer Argon atmosphere Magnetron sputter deposition Cu/Co Alloy Motivation SFC SFC-ICP-MS SFC-OLEMS Conclusion

Max-Planck-Institut für Eisenforschung GmbH, Germany International Conference on Combinatorial Materials Research, Ghent Intro SFC-ICP-MS Pt-Cu alloy Oxidation Reduction A. Schuppert, A.Topalov, A. Savan, A. Ludwig, and K. J. J. Mayrhofer, ChemElectroChem, 1, 358–361 (2014). A. A. Topalov et al., Angew. Chem. Int. Ed. Engl., 51, 12613–5 (2012). Motivation SFC SFC-ICP-MS SFC-OLEMS Conclusion

Max-Planck-Institut für Eisenforschung GmbH, Germany International Conference on Combinatorial Materials Research, Ghent Intro SFC-Online Electrochemical Mass Spectrometer Stability Selectivity J.-P. Grote, A. R. Zeradjanin, S. Cherevko, and K. J. J. Mayrhofer, Rev. Sci. Instrum., 85, (2014) Motivation SFC SFC-ICP-MS SFC-OLEMS Conclusion

Max-Planck-Institut für Eisenforschung GmbH, Germany International Conference on Combinatorial Materials Research, Ghent Intro SFC-OLEMS Motivation SFC SFC-ICP-MS SFC-OLEMS Conclusion

Max-Planck-Institut für Eisenforschung GmbH, Germany International Conference on Combinatorial Materials Research, Ghent Intro SFC-OLEMS J.-P. Grote, A. R. Zeradjanin, S. Cherevko, and K. J. J. Mayrhofer, Rev. Sci. Instrum., 85, (2014) Motivation SFC SFC-ICP-MS SFC-OLEMS Conclusion

Max-Planck-Institut für Eisenforschung GmbH, Germany International Conference on Combinatorial Materials Research, Ghent Intro CO 2 reduction Pd, Hg, In, Sn, Cd, Tl, Bi Cu Au, Ag, Zn Ni,Fe, Pt, Ti, Ga, Co HCOO - CO H2H2 Hydrocarbons CO 2 "Carbon cycle" by Diagram adapted from U.S. DOE, Biological and Environmental Research Information System. - Motivation SFC SFC-ICP-MS SFC-OLEMS Conclusion

Max-Planck-Institut für Eisenforschung GmbH, Germany International Conference on Combinatorial Materials Research, Ghent Intro Cu-Co alloys Cu-Co alloy Cu at % Ethylene Alcohols Methane Hydrogen Motivation SFC SFC-ICP-MS SFC-OLEMS Conclusion

Max-Planck-Institut für Eisenforschung GmbH, Germany International Conference on Combinatorial Materials Research, Ghent Intro Cu and Cu alloy oxides Brass Brass ox Motivation SFC SFC-ICP-MS SFC-OLEMS Conclusion

Max-Planck-Institut für Eisenforschung GmbH, Germany International Conference on Combinatorial Materials Research, Ghent Intro Carbon corrosion Motivation SFC SFC-ICP-MS SFC-OLEMS Conclusion

Max-Planck-Institut für Eisenforschung GmbH, Germany International Conference on Combinatorial Materials Research, Ghent Intro SFC-OLEMS for high surface area cats 2 mm 3 mm Motivation SFC SFC-ICP-MS SFC-OLEMS Conclusion

Max-Planck-Institut für Eisenforschung GmbH, Germany International Conference on Combinatorial Materials Research, Ghent Intro Carbon corrosion Motivation SFC SFC-ICP-MS SFC-OLEMS Conclusion

Max-Planck-Institut für Eisenforschung GmbH, Germany International Conference on Combinatorial Materials Research, Ghent Intro Summary Scanning flow cell Automated: Potentiostat control Position change Electrolyte change Purging gas control Defined surface area for reproducible electrochemistry Temperature control SFC-ICP-MS for dissolution studies High sensitive multi element analysis Relation between potential and dissolution Quantitative results SFC-OLEMS for selectivity studies Direct detection of volatile products Response time below two seconds Semi-quantitative results Motivation SFC SFC-ICP-MS SFC-OLEMS Conclusion

Max-Planck-Institut für Eisenforschung GmbH, Germany International Conference on Combinatorial Materials Research, Ghent Intro Thanks for your attention! Electrocatalysis Group from Max-Planck-Institut für Eisenforschung