Design Studio of Philadelphia University Industrial Applications of 3D Textiles for Composites Christopher M. Pastore Philadelphia University.

Slides:



Advertisements
Similar presentations
Ahmed W. Moustafa Lecture (1)
Advertisements

Fibre Volume Fraction and Laminate Thickness
Mechanics of Composite Materials
The mechanical behavior of textile composites (qualitative analysis) Yasser Gowayed Department of Textile Engineering Auburn University.
RecreationAutomotive Aerospace Industrial Inflatable World Leader in Braided Reinforcements QISO TM and Bimax TM Webinar May 9, 2012.
Large Deformation Non-Linear Response of Composite Structures C.C. Chamis NASA Glenn Research Center Cleveland, OH L. Minnetyan Clarkson University Potsdam,
Chap.8 Mechanical Behavior of Composite
Textile Structures for Composites Objectives After studying this chapter, you should be able to: Describe major textile preform structures used in composites.
Failure Mechanisms in Twill-weave Laminates:
Cracking, Deflections and Ductility Code Provisions and Recent Research October 2006 Serviceability and Ductility The Other Limit States.
address: In-Plane Shear Properties of Multiaxis and Orthogonal 3D Woven Carbon/Epoxy Composites Kadir Bilisik Department.
Laboratory safety rules Basic Properties of Fibres and Other Engineering Materials.
Micromechanics Macromechanics Fibers Lamina Laminate Structure Matrix.
Micromechanics Macromechanics Fibers Lamina Laminate Structure Matrix.
Common Types of Woven Fabric
Principles of Modeling Textile Composites. Issues  Textile composites are not monolithic  Mechanical characterization is not complete  High degree.
Beams and Frames.
Distribution of Microcracks in Rocks Uniform As in igneous rocks where microcrack density is not related to local structures but rather to a pervasive.
Introduction to Textile Fabric Part 1: Basic Knitted Fabrics
The various engineering and true stress-strain properties obtainable from a tension test are summarized by the categorized listing of Table 1.1. Note that.
Designing for Stiffness
CHAPTER 7 TRANSVERSE SHEAR.
M. A. Farjoo.  The stiffness can be defined by appropriate stress – strain relations.  The components of any engineering constant can be expressed in.
Manufacturing with Composite
CM 197 Mechanics of Materials Chap 14: Stresses in Beams
Assist.Prof.Dr. Ahmet Erklig
CH3 MICROMECHANICS Assist.Prof.Dr. Ahmet Erklig. Ultimate Strengths of a Unidirectional Lamina.
FUNDAMENTALS OF METAL FORMING
MECHANICAL PROPERTIES OF MATERIALS
Materials Composites. Introduction The major problem in the application of polymers to engineering is their low stiffness and strength compared to steel.
Mechanics of Materials(ME-294)
Composite reinforcements come in many styles
1 Woven Fabric Geometry Dr Jimmy Lam Institute of Textiles & Clothing.
How to fabricate optimum/complex materials from single materials
J. McPherson; October Sensitivity of Carbon/Epoxy Laminates to Void Content A Thesis Proposal Submitted to the Graduate.
1 Chap. 9 Design of Composite Materials 9-1. Advantages of Composite Materials in Structural Design The main advantages of using composites in structural.
Rules of Mixture for Elastic Properties
SHEAR IN BEAMS. SHEAR IN BEAMS Introduction Loads applied to beams produce bending moments, shearing forces, as shown, and in some cases torques. Beams.
MAE 661 Laminated Composites Introduction Materials and Processes
ME 520 Fundamentals of Finite Element Analysis
Identifying the Problem The lack of preferential anisotropic reinforcement in “mainstream” composites has provided motivation to develop materials with.
Introduction Composite and Nanocomposite Materials
Opportunities and Challenges for Textile Reinforced Composites Christopher M. Pastore Philadelphia University Philadelphia, Pennsylvania, USA.
Constitutive modeling of viscoelastic behavior of CNT/Polymer composites K. Yazdchi 1, M. Salehi 2 1- Multi scale Mechanics (MSM), Faculty of Engineering.
Mechanical Properties
Concrete 2003 Brisbane July 2003 Design Of Pre-cast Buried Structures For Internal Impact Loading.
Background on Composite Property Estimation and Measurement
Design of Concrete Structure I Dr. Ali Tayeh First Semester 2009 Dr. Ali Tayeh First Semester 2009.
Thermal Degradation of Polymeric Foam Cored Sandwich Structures S.Zhang 1, J.M.Dulieu-Barton 1, R.K.Fruehmann 1, and O.T.Thomsen 2 1 Faculty of Engineering.
Applied mechanics of solids A.F. Bower.
FUNDAMENTALS OF METAL FORMING
Composite Materials Manufacturing Composite Materials Manufacturing 정분방.
Mechanical Engineering Department Advanced Composites Dr. Talal Mandourah 1 Lecture 9 & 10 Processing Routes Hot-melt Impregnation system Step 1 Preparation.
Subject: Composite Materials Science and Engineering Subject code:
Welding Inspection and Metallurgy
Machine Design I (MCE-C 203) Mechatronics Dept., Faculty of Engineering, Fayoum University Dr. Ahmed Salah Abou Taleb Lecturer, Mechanical Engineering.
Design of Thin-Walled Members
GTCOMPROP (Georgia Tech COMposite Material Member PROPerties calculator) Structural Engineering Software for the Analysis of Space Frame Structure Composed.
Testing Methods for Composites
Fabric Development, Inc.
EGM 5653 Advanced Mechanics of Materials
Mechanics of Bone BME 615.
Materials Science Chapter 8 Deformation and Fracture.
4. Local strength calculation
Computational Prediction of Mechanical Performance of Particulate-Reinforced Al Metal-Matrix Composites (MMCs) using a XFEM Approach Emily A. Gerstein.
Samuel Sellner, Mechanical Engineering
By Prof. M. ELMESSIRY Textile Eng. Department Alexandria university
FIBER REINFORCED CONCRETE
Lecture-07 Elastic Constants MODULUS OF ELASTICITY (E)
Presentation transcript:

Design Studio of Philadelphia University Industrial Applications of 3D Textiles for Composites Christopher M. Pastore Philadelphia University Philadelphia, Pennsylvania, USA

Design Studio of Philadelphia University Textile Reinforced Composites  Fiber reinforced composites whose repeating volume element (RVE) is characterized by more than one fiber orientation.  Formed with hierarchical textile processes that manipulate individual fibers or yarn bundles to create an integral structure.  It is possible to join various sub-assemblies together to form even more complex structures.

Design Studio of Philadelphia University History of Textile Composites  The primary work in structural textile composites was initiated in the 1960’s and 70’s  The motivation was primarily elimination of delamination  From impact  From ablation  Many 3D textiles were developed in this activity around the world.

Design Studio of Philadelphia University Advantages of 3D Textiles  The use of textiles in composites revealed two sets of benefits:  Delamination resistance  Primarily derived from through thickness orientation of yarns  Potential for reduced cost  Pre-assembled layers of fibers reduce touch labor  Part consolidation can be realized with near-net-shape manufacturing

Design Studio of Philadelphia University Disadvantages to Textiles  Crimp  Need for new machinery  Development cost  Difficulties in structural characterization

Design Studio of Philadelphia University Evaluation of Textiles  The true effectiveness of textiles for applications is very specific, depending on  Fabric type  Size of part  Mechanical performance requirements  Availability of processing equipment

Design Studio of Philadelphia University Perceived Benefits  Textiles are considered to have significant cost savings compared to tape lay-up.  Individual layer of fabric is much thicker than tape.  Fewer lay-up steps are necessary to create the final structure.  Formed from dry fiber and infiltrated with resin in a secondary operation.  Handling and storage requirements of the material are reduced compared to prepreg.  A single product is suitable for a variety of matrix materials, reducing inventory and manufacturing costs.

Design Studio of Philadelphia University XYZ Orthogonal Nonwoven A variation on non- wovens is the XYZ system which has no interlacings, but uses fibers or yarns to create the structure.

Design Studio of Philadelphia University Jersey Knits  The simplest weft knit structure is the jersey.  Inherently bulky due to curvature of the yarn.  The “natural” thickness of a jersey knit fabric is roughly three times the thickness of the yarns, resulting in maximum yarn packing factors of 20-25%, and thus V f around 15%.  High extensibility (up to 100% strain to failure) which allows complex shape formation capabilities.

Design Studio of Philadelphia University Conformable Rib Knit

Design Studio of Philadelphia University Warp Knits  In the WIWK, the load bearing yarns are locked into the structure through the knitting process

Design Studio of Philadelphia University Types of 2D Braids

Design Studio of Philadelphia University 3D Braiding Machine

Design Studio of Philadelphia University Basic weave structures

Design Studio of Philadelphia University 3D Weaves Layer-to-layer Through thickness XYZ

Design Studio of Philadelphia University Crimp in Textiles  The crimp is defined as one less than the ratio of the yarn's actual length to the length of fabric it traverses.  Crimp levels influence fiber volume fraction, thickness of fabric, and mechanical performance of fabric.  High crimp leads to  Reduced tensile and compressive properties  Increased shear modulus in the dry fabric and the resulting composite  Fewer regions for localized delamination between individual yarns.

Design Studio of Philadelphia University New Machinery/Processes  Very complex shaped objects can be produced with textile processes  Sometimes new processes or machinery are required.  Particular emphasis is on placement of bias yarns in woven fabrics.

Design Studio of Philadelphia University Doubly Stiffened Woven Panel

Design Studio of Philadelphia University Variations in Weave Design  Consider the formation of a tapered fabric  Weaves can have gradients in a single or double axis by changing yarn size in the width or length  Complex shapes can be achieved through “floating” and cutting yarns to reduce total number of yarns in some section of the part

Design Studio of Philadelphia University Gradations through yarn size

Design Studio of Philadelphia University Shape through floats

Design Studio of Philadelphia University Issues with shaping woven fabrics  Tailoring the cross-section of a weave results in  a change in weave angle,  a change in the distribution of longitudinal, weaver, and fill, and  a change in fiber volume fraction in consequence to the change in thickness.  Some fiber volume fraction effects can be controlled by tooling. The tailoring occurs in a discrete manner, using individual yarns, whereas most tooling will be approximately continuous.

Design Studio of Philadelphia University Mechanical Property Predictions  to model the structural response it is necessary to describe the mechanical properties of the material.  The simplest form is to treat as homogenous medium with anisotropic properties.  This is termed homogenization of the material.  If the volume of material to be homogenized is small compared to the structural component, this approach seems reasonable.  In the case of textile reinforced materials, the RVE is typically quite large, on the order of cm in some cases. It may not be reasonable to consider the RVE as representing the response of the material  Special analytical tools need to be developed to understand the local response within the RVE.

Design Studio of Philadelphia University Homogenization of Properties  Analytical techniques have been developed to predict the elastic properties of textile composite RVE's.  averaging mechanical properties of the constituent materials,  Bolotin (1966), Nosarev (1967), Tarnopol'skii et al. (1967), and Sendeckyj (1970), Roze and Zhigun (1970), Kregers and Melbardis (1978), Kregers and Teters (1979), Chou et al. (1986), Ishikawa and Chou (1982), Jortner (1984), Whyte (1986), Ko et al. (1987), Ko and Pastore (1989), Howarth (1991), Jaranson et al. (1993), Singletary (1994), Pochiraju et al. (1993)  property predictions based upon detailed geometric descriptions of the reinforcement, and  Foye (1991), Gowayed (1992), Bogdanovich et al. (1993), Carter et al. (1995).  finite element methods treating matrix and fiber as discrete components.  Kabelka (1984), Woo and Whitcomb (1993), Sankar and Marrey (1993), Yoshino and Ohtsuka (1982), Whitcomb (1989), Dasgupta et al. (1992), Naik and Ganesh (1992), Lene and Paumelle (1992), Blacketter et al. (1993) and Glaesgen et al. (1996), Hill et al. (1994), Naik (1994)

Design Studio of Philadelphia University Non-RVE Considerations  The size of the RVE is relatively large compared to test specimens and some actual structures.  The application of RVE based analysis may not be appropriate  Even experimental data can be effected by this assumption  The strain gage used in tensile testing usually covers only a few RVEs of the textile, and sometimes even less than 1.

Design Studio of Philadelphia University Measurements of Elastic Properties  If the measurement system does not contain a large number of RVEs, then the measurements do not reflect a true average value.  The location of the gage will affect the measured values.  Some of the perceived high variation in tensile modulus may be due to the relationship between strain gage and RVE size.

Design Studio of Philadelphia University Moiré Interferometry Field on Axially Loaded Braided Composite

Design Studio of Philadelphia University Elastic Modulus vs. Gage Area for Braided and 3D Woven Composites

Design Studio of Philadelphia University Location of Test Cell with Respect to Unit Cells in a Triaxial Braid

Design Studio of Philadelphia University Predicted Tensile Moduli for 60 ° Triaxial Braid AS-4/ Epoxy Test Cell with y 1 = b and x 1 = 4.1a

Design Studio of Philadelphia University Predicted and Experimental Tensile Modulus of a Triaxially Braided AS-4/ Epoxy Composite with 45° Braid Angle and 12% Longitudinal Yarns

Design Studio of Philadelphia University Predicted and Experimental Tensile Modulus of a Triaxially Braided AS- 4/Epoxy Composite with 45° Braid Angle and 46% Longitudinal Yarns

Design Studio of Philadelphia University Predicted and Experimental Tensile Modulus of a Triaxially Braided AS-4/ Epoxy Composite with 70° Braid Angle and 46% Longitudinal Yarns

Design Studio of Philadelphia University Outlook  Tremendous variety of textile reinforcements available for composites applications.  Range from very traditional processes such as weaving to novel techniques such as three- dimensional fabrics.  The most obvious advantage of these materials is labor savings.

Design Studio of Philadelphia University Physical Limitations  Current cost of production.  modifications to machines are needed for shaping capabilities,  capital cost is applied to a few prototypes, the unit cost is tremendous (no economy of scale)  Processing difficulties.  infiltration at high pressure, and thermal effects during curing.  frequently results in internal yarn geometry distortions.  elastic and strength properties have high variation.  thermal effects can result in local disbonds from yarns.  One approach that seems promising is the use of cold cure systems such as e- beam curing to reduce the temperature of cure and thus reduce the effect of different coefficients of thermal expansion between the fiber and resin.

Design Studio of Philadelphia University Analytical Shortcomings  Analytical techniques are still not adequate to satisfy structural analysts planning to apply these materials to load bearing structures.  Some “variation” in elastic performance is expected due to a non-integer number of RVE's.  the design allowables for the materials are greatly reduced, frequently making them appear unsuitable for structural application due to the perception of high weight penalty.  It is possible to account for this behavior even with simple tools such as stiffness averaging if the non-RVE element is modeled.

Design Studio of Philadelphia University Failure Analysis  Understanding of failure initiation and growth is still required.  Greater resolution of the internal stress state is needed than that for establishing homogenized elastic constants.  Failure modes are poorly understood.  These modes are associated with local curvature and distortion of the yarns at crossover points, and cracking between yarn bundles (inter-bundle cracking).  Transverse cracking and fiber failure within the yarns (intra-bundle cracking) are also a function of the complex stress state inherent in a textile.  An important issue is how curvature and inter-bundle cracking affect compression by reducing the stability of the yarn.

Design Studio of Philadelphia University Conclusions  Textile composites have been intriguing composites researchers since the 1960s. However they have not gained true acceptance in the industry as yet.  Textile composites will remain only promises until:  cost of production are greatly reduced,  material forms are refined to meet arbitrary mechanical property requirements, and  analytical techniques are developed fully.

Design Studio of Philadelphia University Conclusions  It seems that military demands will not drive the necessary technology to turn these dreams into reality.  What is needed is aggressive development on the part of the textile manufacturer to find appropriate industrial placement.  The most likely market forces driving future development will be the biomedical, automotive, and civil infrastructure industries.