Stereo Readings Trucco & Verri, Chapter 7 –Read through 7.1, 7.2.1, 7.2.2, 7.3.1, 7.3.2, 7.3.7 and 7.4, 7.4.1. –The rest is optional. Single image stereogram,

Slides:



Advertisements
Similar presentations
The fundamental matrix F
Advertisements

Lecture 11: Two-view geometry
Public Library, Stereoscopic Looking Room, Chicago, by Phillips, 1923.
Gratuitous Picture US Naval Artillery Rangefinder from World War I (1918)!!
Stereo Many slides adapted from Steve Seitz. Binocular stereo Given a calibrated binocular stereo pair, fuse it to produce a depth image Where does the.
Recap from Previous Lecture Tone Mapping – Preserve local contrast or detail at the expense of large scale contrast. – Changing the brightness within.
Lecture 8: Stereo.
Stereo.
Last Time Pinhole camera model, projection
CS6670: Computer Vision Noah Snavely Lecture 17: Stereo
Multiple View Geometry : Computational Photography Alexei Efros, CMU, Fall 2005 © Martin Quinn …with a lot of slides stolen from Steve Seitz and.
Computer Vision : CISC 4/689 Adaptation from: Prof. James M. Rehg, G.Tech.
Lecture 21: Multiple-view geometry and structure from motion
Stereo Binocular Stereo Calibration (finish up) Next Time Motivation
Stereopsis Mark Twain at Pool Table", no date, UCR Museum of Photography.
The plan for today Camera matrix
3D from multiple views : Rendering and Image Processing Alexei Efros …with a lot of slides stolen from Steve Seitz and Jianbo Shi.
CSCE 641 Computer Graphics: Image-based Modeling Jinxiang Chai.
Lecture 10: Stereo and Graph Cuts
Lecture 20: Two-view geometry CS6670: Computer Vision Noah Snavely.
Lecture 11: Stereo and optical flow CS6670: Computer Vision Noah Snavely.
Lec 21: Fundamental Matrix
CSE473/573 – Stereo Correspondence
Announcements PS3 Due Thursday PS4 Available today, due 4/17. Quiz 2 4/24.
Stereo Guest Lecture by Li Zhang
Project 1 artifact winners Project 2 questions Project 2 extra signup slots –Can take a second slot if you’d like Announcements.
Midterm went out on Tuesday (due next Tuesday) Project 3 out today Announcements.
Multiple View Geometry : Computational Photography Alexei Efros, CMU, Fall 2006 © Martin Quinn …with a lot of slides stolen from Steve Seitz and.
VZvZ r t b image cross ratio Measuring height B (bottom of object) T (top of object) R (reference point) ground plane H C scene cross ratio  scene points.
3-D Scene u u’u’ Study the mathematical relations between corresponding image points. “Corresponding” means originated from the same 3D point. Objective.
Epipolar Geometry and Stereo Vision Computer Vision CS 543 / ECE 549 University of Illinois Derek Hoiem 04/12/11 Many slides adapted from Lana Lazebnik,
CSCE 641 Computer Graphics: Image-based Modeling Jinxiang Chai.
What have we leaned so far? Camera structure Eye structure Project 1: High Dynamic Range Imaging.
Computer Vision Spring ,-685 Instructor: S. Narasimhan WH 5409 T-R 10:30am – 11:50am Lecture #15.
Epipolar Geometry and Stereo Vision Computer Vision CS 543 / ECE 549 University of Illinois Derek Hoiem 03/05/15 Many slides adapted from Lana Lazebnik,
Camera Calibration & Stereo Reconstruction Jinxiang Chai.
What have we leaned so far? Camera structure Eye structure Project 1: High Dynamic Range Imaging.
Announcements Project 1 artifact winners Project 2 questions
Structure from images. Calibration Review: Pinhole Camera.
Recap from Monday Image Warping – Coordinate transforms – Linear transforms expressed in matrix form – Inverse transforms useful when synthesizing images.
Stereo Vision Reading: Chapter 11 Stereo matching computes depth from two or more images Subproblems: –Calibrating camera positions. –Finding all corresponding.
Stereo Readings Szeliski, Chapter 11 (through 11.5) Single image stereogram, by Niklas EenNiklas Een.
Stereo Many slides adapted from Steve Seitz.
Project 2 code & artifact due Friday Midterm out tomorrow (check your ), due next Fri Announcements TexPoint fonts used in EMF. Read the TexPoint.
Stereo Many slides adapted from Steve Seitz. Binocular stereo Given a calibrated binocular stereo pair, fuse it to produce a depth image image 1image.
Computer Vision, Robert Pless
Lec 22: Stereo CS4670 / 5670: Computer Vision Kavita Bala.
Announcements Project 3 due Thursday by 11:59pm Demos on Friday; signup on CMS Prelim to be distributed in class Friday, due Wednesday by the beginning.
Computer Vision Stereo Vision. Bahadir K. Gunturk2 Pinhole Camera.
CSE 185 Introduction to Computer Vision Stereo. Taken at the same time or sequential in time stereo vision structure from motion optical flow Multiple.
Bahadir K. Gunturk1 Phase Correlation Bahadir K. Gunturk2 Phase Correlation Take cross correlation Take inverse Fourier transform  Location of the impulse.
Lecture 16: Stereo CS4670 / 5670: Computer Vision Noah Snavely Single image stereogram, by Niklas EenNiklas Een.
stereo Outline : Remind class of 3d geometry Introduction
Digital Image Processing
776 Computer Vision Jan-Michael Frahm Spring 2012.
Solving for Stereo Correspondence Many slides drawn from Lana Lazebnik, UIUC.
Project 2 due today Project 3 out today Announcements TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAAAA.
Project 2 artifacts—vote now!! Project 3 questions? Start thinking about final project ideas, partners Announcements.
Project 3 code & artifact due Tuesday Final project proposals due noon Wed (by ) –One-page writeup (from project web page), specifying: »Your team.
Energy minimization Another global approach to improve quality of correspondences Assumption: disparities vary (mostly) smoothly Minimize energy function:
CSE 185 Introduction to Computer Vision Stereo 2.
Stereo CS4670 / 5670: Computer Vision Noah Snavely Single image stereogram, by Niklas EenNiklas Een.
Noah Snavely, Zhengqi Li
55:148 Digital Image Processing Chapter 11 3D Vision, Geometry
제 5 장 스테레오.
CS4670 / 5670: Computer Vision Kavita Bala Lec 27: Stereo.
Announcements Midterms graded (handed back at end of lecture)
What have we learned so far?
Epipolar geometry continued
Stereo vision Many slides adapted from Steve Seitz.
Presentation transcript:

Stereo Readings Trucco & Verri, Chapter 7 –Read through 7.1, 7.2.1, 7.2.2, 7.3.1, 7.3.2, and 7.4, –The rest is optional. Single image stereogram, by Niklas EenNiklas Een

Public Library, Stereoscopic Looking Room, Chicago, by Phillips, 1923

Teesta suspension bridge-Darjeeling, India

Woman getting eye exam during immigration procedure at Ellis Island, c , UCR Museum of Phography

Mark Twain at Pool Table", no date, UCR Museum of Photography

Stereo scene point optical center image plane

Stereo Basic Principle: Triangulation Gives reconstruction as intersection of two rays Requires –camera pose (calibration) –point correspondence

Stereo correspondence Determine Pixel Correspondence Pairs of points that correspond to same scene point Epipolar Constraint Reduces correspondence problem to 1D search along conjugate epipolar lines Java demo: epipolar plane epipolar line

Fundamental matrix This epipolar geometry of two views is described by a Very Special 3x3 matrix, called the fundamental matrix maps (homogeneous) points in image 1 to lines in image 2! The epipolar line (in image 2) of point p is: Epipolar constraint on corresponding points: epipolar plane epipolar line 0 (projection of ray) Image 1Image 2

Fundamental matrix – uncalibrated case 0 the Fundamental matrix : intrinsics of camera 1 : intrinsics of camera 2 : rotation of image 2 w.r.t. camera 1

Cross-product as linear operator Useful fact: Cross product with a vector t can be represented as multiplication with a (skew-symmetric) 3x3 matrix

Fundamental matrix – calibrated case 0 : ray through p in camera 1’s (and world) coordinate system : ray through q in camera 2’s coordinate system { the Essential matrix

Properties of the Fundamental Matrix is the epipolar line associated with and is rank 2 How many parameters does F have? 14 T

Rectified case

Stereo image rectification

reproject image planes onto a common plane parallel to the line between optical centers pixel motion is horizontal after this transformation two homographies (3x3 transform), one for each input image reprojection  C. Loop and Z. Zhang. Computing Rectifying Homographies for Stereo Vision. IEEE Conf. Computer Vision and Pattern Recognition, 1999.Computing Rectifying Homographies for Stereo Vision

Estimating F If we don’t know K 1, K 2, R, or t, can we estimate F for two images? Yes, given enough correspondences. We’ll see soon…

Stereo Matching Given a pixel in the left image, how to find its match? Assume the photos have been rectified

Your basic stereo algorithm For each epipolar line For each pixel in the left image compare with every pixel on same epipolar line in right image pick pixel with minimum match cost Improvement: match windows This should look familar...

Window size Smaller window + – Larger window + – W = 3W = 20 Effect of window size

Stereo results Ground truthScene Data from University of Tsukuba Similar results on other images without ground truth

Results with window search Window-based matching (best window size) Ground truth

Better methods exist... State of the art method Boykov et al., Fast Approximate Energy Minimization via Graph Cuts,Fast Approximate Energy Minimization via Graph Cuts International Conference on Computer Vision, September Ground truth For the latest and greatest:

Stereo as energy minimization What defines a good stereo correspondence? 1. Match quality –Want each pixel to find a good match in the other image 2. Smoothness –If two pixels are adjacent, they should (usually) move about the same amount

Stereo as energy minimization Find disparity map d that minimizes an energy function Simple pixel / window matching SSD distance between windows I(x, y) and J(x + d(x,y), y) =

Stereo as energy minimization I(x, y)J(x, y) y = 141 C(x, y, d); the disparity space image (DSI) x d

Stereo as energy minimization y = 141 x d Simple pixel / window matching: choose the minimum of each column in the DSI independently:

Stereo as energy minimization Better objective function {{ match cost smoothness cost Want each pixel to find a good match in the other image Adjacent pixels should (usually) move about the same amount

Stereo as energy minimization match cost: smoothness cost: 4-connected neighborhood 8-connected neighborhood : set of neighboring pixels

Smoothness cost “Potts model” L 1 distance How do we choose V?

Dynamic programming Can minimize this independently per scanline using dynamic programming (DP) : minimum cost of solution such that d(x,y) = d

Dynamic programming Finds “smooth” path through DPI from left to right y = 141 x d

Dynamic Programming

Can we apply this trick in 2D as well? No: d x,y-1 and d x-1,y may depend on different values of d x-1,y-1 Dynamic programming Slide credit: D. Huttenlocher

Stereo as a minimization problem The 2D problem has many local minima Gradient descent doesn’t work well And a large search space n x m image w/ k disparities has k nm possible solutions Finding the global minimum is NP-hard in general

Stereo as global optimization Expressing this mathematically 1. Match quality –Want each pixel to find a good match in the other image 2. Smoothness –If two pixels are adjacent, they should (usually) move about the same amount We want to minimize sum of these two cost terms This is a special type of cost function known as an MRF (Markov Random Field) –Effective and fast algorithms have been recently developed: »Graph cuts, belief propagation…. »for more details (and code):

38 Middlebury Stereo Evaluation 38

Depth from disparity f xx’ baseline z CC’ X f

Real-time stereo Used for robot navigation (and other tasks) Several software-based real-time stereo techniques have been developed (most based on simple discrete search) Nomad robot Nomad robot searches for meteorites in Antartica

Camera calibration errors Poor image resolution Occlusions Violations of brightness constancy (specular reflections) Large motions Low-contrast image regions Stereo reconstruction pipeline Steps Calibrate cameras Rectify images Compute disparity Estimate depth What will cause errors?

Active stereo with structured light Project “structured” light patterns onto the object simplifies the correspondence problem can remove one of the cameras (replace with projector) camera 1 projector Microsoft’s Kinect

Active stereo with structured light

Laser scanning Optical triangulation Project a single stripe of laser light Scan it across the surface of the object This is a very precise version of structured light scanning Digital Michelangelo Project

Laser scanned models The Digital Michelangelo Project, Levoy et al.

Laser scanned models The Digital Michelangelo Project, Levoy et al.

Laser scanned models The Digital Michelangelo Project, Levoy et al.

Laser scanned models The Digital Michelangelo Project, Levoy et al.

Laser scanned models The Digital Michelangelo Project, Levoy et al.

Estimating F If we don’t know K 1, K 2, R, or t, can we estimate F for two images? Yes, given enough correspondences

Estimating F – 8-point algorithm The fundamental matrix F is defined by for any pair of matches x and x’ in two images. Let x=(u,v,1) T and x’=(u’,v’,1) T, each match gives a linear equation

8-point algorithm In reality, instead of solving, we seek f to minimize, least eigenvector of.

8-point algorithm – Problem? F should have rank 2 To enforce that F is of rank 2, F is replaced by F’ that minimizes subject to the rank constraint. This is achieved by SVD. Let, where, let then is the solution.

8-point algorithm % Build the constraint matrix A = [x2(1,:)‘.*x1(1,:)' x2(1,:)'.*x1(2,:)' x2(1,:)'... x2(2,:)'.*x1(1,:)' x2(2,:)'.*x1(2,:)' x2(2,:)'... x1(1,:)' x1(2,:)' ones(npts,1) ]; [U,D,V] = svd(A); % Extract fundamental matrix from the column of V % corresponding to the smallest singular value. F = reshape(V(:,9),3,3)'; % Enforce rank2 constraint [U,D,V] = svd(F); F = U*diag([D(1,1) D(2,2) 0])*V';

8-point algorithm Pros: it is linear, easy to implement and fast Cons: susceptible to noise