Shot noise in GW detectors G González. x Power (ASDC) bright dark /2 The dark fringe L+  L L-  L i  L  P=P 0 sin 2 (  t+k  l) = (P 0 /2) (1+sin.

Slides:



Advertisements
Similar presentations
Beyond The Standard Quantum Limit B. W. Barr Institute for Gravitational Research University of Glasgow.
Advertisements

Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut) HOMODYNE AND HETERODYNE READOUT OF A SIGNAL- RECYCLED GRAVITATIONAL WAVE DETECTOR.
Gravitational Wave Astronomy Dr. Giles Hammond Institute for Gravitational Research SUPA, University of Glasgow Universität Jena, August 2010.
19. October 2004 A. Freise Automatic Alignment using the Anderson Technique A. Freise European Gravitational Observatory Roma
Dual Recycling for GEO 600 Andreas Freise, Hartmut Grote Institut für Atom- und Molekülphysik Universität Hannover Max-Planck-Institut für Gravitationsphysik.
Gravitational Wave Astronomy Dr. Giles Hammond Institute for Gravitational Research SUPA, University of Glasgow Universität Jena, August 2010.
Laser Interferometer Gravitational-wave Detectors: Advancing toward a Global Network Stan Whitcomb LIGO/Caltech ICGC, Goa, 18 December 2011 LIGO-G v1.
G v1Squeezed Light Interferometry1 Squeezed Light Techniques for Gravitational Wave Detection July 6, 2012 Daniel Sigg LIGO Hanford Observatory.
Optics of GW detectors Jo van den Brand
Koji Arai – LIGO Laboratory / Caltech LIGO-G v2.
LIGO NSF review, 11/10/05 1 AdLIGO Optical configuration and control Nov 10, 2005 Alan Weinstein for AdLIGO Interferometer Sensing and Control (ISC) and.
Physics 237: Gravitational Waves A course at the California Institute of Technology, Pasadena, California January - May 2002 Copyright 2002 by the California.
Marcus Benna, University of Cambridge Wavefront Sensing in Dual-Recycled Interferometers LIGO What is Wavefront Sensing? How does it work? –Detection of.
LIGO-G W Where Did the LSC Signals Come From? Fred Raab 27 June 02.
Laser Interferometer Gravitational-wave Observatory1 Characterization of LIGO Input Optics University of Florida Thomas Delker Guido Mueller Malik Rakhmanov.
The LIGO Project ( Laser Interferometer Gravitational-Wave Observatory) Rick Savage – Scientist LIGO Hanford Observatory.
Marcus Benna, University of Cambridge Wavefront Sensing in Dual-Recycled Interferometers LIGO What is Wavefront Sensing? How does it work? –Detection of.
Gravitational Wave Detection Overview of Why and How
Koji Arai – LIGO Laboratory / Caltech LIGO-G v1.
TeV Particle Astrophysics August 2006 Caltech Australian National University Universitat Hannover/AEI LIGO Scientific Collaboration MIT Corbitt, Goda,
Generation of squeezed states using radiation pressure effects David Ottaway – for Nergis Mavalvala Australia-Italy Workshop October 2005.
G R DC Readout for Advanced LIGO P Fritschel LSC meeting Hannover, 21 August 2003.
RF readout scheme to overcome the SQL Feb. 16 th, 2004 Aspen Meeting Kentaro Somiya LIGO-G Z.
The GEO 600 Detector Andreas Freise for the GEO 600 Team Max-Planck-Institute for Gravitational Physics University of Hannover May 20, 2002.
LIGO-G R Aspen Current Status of the 40m Detuned RSE Prototype Seiji Kawamura 2004 Aspen Winter Conference on Gravitational Waves Gravitational.
Stefan Hild October 2007 LSC-Virgo meeting Hannover Interferometers with detuned arm cavaties.
GEO‘s experience with Signal Recycling Harald Lück Perugia,
Generation and Control of Squeezed Light Fields R. Schnabel  S.  Chelkowski  A.  Franzen  B.  Hage  H.  Vahlbruch  N. Lastzka  M.  Mehmet.
LIGO-G D Enhanced LIGO Kate Dooley University of Florida On behalf of the LIGO Scientific Collaboration SESAPS Nov. 1, 2008.
Optomechanical Devices for Improving the Sensitivity of Gravitational Wave Detectors Chunnong Zhao for Australian International Gravitational wave Research.
SQL Related Experiments at the ANU Conor Mow-Lowry, G de Vine, K MacKenzie, B Sheard, Dr D Shaddock, Dr B Buchler, Dr M Gray, Dr PK Lam, Prof. David McClelland.
The Big Bang Observer: High Laser Power for Gravitational- wave Astrophysics Gregory Harry, Peter Fritschel LIGO Laboratory, Massachusetts Institute of.
Displacement calibration techniques for the LIGO detectors Evan Goetz (University of Michigan)‏ for the LIGO Scientific Collaboration April 2008 APS meeting.
1 Wan Wu, Volker Quetschke, Ira Thorpe, Rodrigo Delgadillo, Guido Mueller, David Reitze, and David Tanner Noise associated with the EOM in Advanced LIGO.
LIGO- G R Sensing and control, SPIE conference, June Sensing and control of the Advanced LIGO optical configuration SPIE conference at.
Koji Arai – LIGO Laboratory / Caltech LIGO-G v2.
LIGO-G R Quantum Noise in Gravitational Wave Interferometers Nergis Mavalvala PAC 12, MIT June 2002 Present status and future plans.
Some Ideas About a Vacuum Squeezer A.Giazotto INFN-Pisa.
AIGO 2K Australia - Italy Workshop th October th October 2005 Pablo Barriga for AIGO group.
Opto-mechanics with a 50 ng membrane Henning Kaufer, A. Sawadsky, R. Moghadas Nia, D.Friedrich, T. Westphal, K. Yamamoto and R. Schnabel GWADW 2012,
Dual Recycling in GEO 600 H. Grote, A. Freise, M. Malec for the GEO600 team Institut für Atom- und Molekülphysik University of Hannover Max-Planck-Institut.
SQL Related Experiments at the ANU Conor Mow-Lowry, G de Vine, K MacKenzie, B Sheard, Dr D Shaddock, Dr B Buchler, Dr M Gray, Dr PK Lam, Prof. David McClelland.
G R Interferometer Sensing & Control P Fritschel 8 Oct 02.
LOGO Gravitational Waves I.S.Jang Introduction Contents ii. Waves in general relativity iii. Gravitational wave detectors.
Stefan Hild 1GWADW, Elba, May 2006 Experience with Signal- Recycling in GEO 600 Stefan Hild, AEI Hannover for the GEO-team.
Opening our eyes to QND technical issues (workshop and open forum) “It’ll be the blind leading the blind” - Stan Whitcomb “You can see a lot by looking”
LIGO-G D Advanced LIGO Systems & Interferometer Sensing & Control (ISC) Peter Fritschel, LIGO MIT PAC 12 Meeting, 27 June 2002.
Testing Advanced LIGO length sensing and control scheme at the Caltech 40m interferometer. at the Caltech 40m interferometer. Yoichi Aso*, Rana Adhikari,
Interferometer configurations for Gravitational Wave Detectors
Characterization of Advanced LIGO Core Optics
Quantum noise reduction using squeezed states in LIGO
Overview of quantum noise suppression techniques
Synopsis by Maria Ruiz-Gonzalez 12/8/16
Haixing Miao University of Birmingham List of contributors:
Homodyne readout of an interferometer with Signal Recycling
Quantum Noise in Advanced Gravitational Wave Interferometers
Quantum Noise in Gravitational Wave Interferometers
Heterodyne Readout for Advanced LIGO
Quantum effects in Gravitational-wave Interferometers
Homodyne or heterodyne Readout for Advanced LIGO?
Current Status of the 40m Detuned RSE Prototype
Quantum Optics and Macroscopic Quantum Measurement
Workshop on Gravitational Wave Detectors, IEEE, Rome, October 21, 2004
Heterodyne Readout for Advanced LIGO
“Traditional” treatment of quantum noise
Gravitational Waves Fundamentals and Early History 3
Squeezed Light Techniques for Gravitational Wave Detection
RF readout scheme to overcome the SQL
Advanced Optical Sensing
Homodyne detection: understanding the laser noise amplitude transfer function Jérôme Degallaix Ilias meeting – June 2007.
Presentation transcript:

Shot noise in GW detectors G González

x Power (ASDC) bright dark /2 The dark fringe L+  L L-  L i  L  P=P 0 sin 2 (  t+k  l) = (P 0 /2) (1+sin (2  t+2k  l)): insensitive to  l If we phase-modulate the light: If the Michelson arms are equal length in average, power is same (dark) for carrier and sidebands: no signal yet. If arms are not equal (Schnupp asymmetry), carrier is dark, but sidebands are not. The “beat” of carrier and sidebands has then a signal (photocurrent): P=|E 0 +E + +E - | 2  DC+ J 0 J 1 sin(k  L)sin(k m D L)sin(w m t) + …(2w m t) Then, “demodulate” : multiply by sin(w m t) or cos(w m t) to produce I and Q phases For  m =25 MHz ( m =12 m), sidebands have w  wm=w0(1  ).

Michelson interferometer Shot noise at output : white noise with psd: Output signal: x Power (ASDC) bright dark /2

Power-recycled Michelson: PNI experiment

(green) PNI experiment Lossless, mid fringe: Lossless, demodulated at dark fringe: Lossy, demodulated at dark fringe: PRL, 80, p8131, 1998

Power-recycled Fabry Perot Michelson interferometer

Fabry Perot cavity

LIGO cavity parameters

L1 “noise budget”  ~4  x/ ~1e-12 rad/rtHz

Shot noise and radiation pressure Standard quantum limit:

Advanced LIGO: signal recycling Advanced LIGO

Beyond SQL ALESSANDRA BUONANNO AND YANBEI CHEN PHYSICAL REVIEW D

The references I used, in chronological order, were: VOLUME 80, NUMBER 15 P H Y S I C A L R E V I E W L E T T E R S 13 APRIL 1998 High Power Interferometric Phase Measurement Limited by Quantum Noise and Application to Detection of Gravitational Waves P. Fritschel, G. González,* B. Lantz, P. Saha,† and M. Zucker Shot noise in gravitational-wave detectors with Fabry–Perot arms Torrey T. Lyons, Martin W. Regehr, and Frederick J. Raab 20 December 2000 Vol. 39, No. 36 APPLIED OPTICS Quantum noise in second generation, signal-recycled laser interferometric gravitational-wave detectors Alessandra Buonanno and Yanbei Chen PHYSICAL REVIEW D, VOLUME 64, Second generation instruments for the Laser Interferometer Gravitational Wave Observatory (LIGO) Peter Fritschel SPIE Proceedings LIGO document P pdf