COMPUTER ARCHITECTURE

Slides:



Advertisements
Similar presentations
AMD OPTERON ARCHITECTURE Omar Aragon Abdel Salam Sayyad This presentation is missing the references used.
Advertisements

Multi-core systems System Architecture COMP25212 Daniel Goodman Advanced Processor Technologies Group.
MULTICORE PROCESSOR TECHNOLOGY.  Introduction  history  Why multi-core ?  What do you mean by multicore?  Multi core architecture  Comparison of.
Chapter 1 An Introduction To Microprocessor And Computer
The First Microprocessor By: Mark Tocchet and João Tupinambá.
Instructor: Sazid Zaman Khan Lecturer, Department of Computer Science and Engineering, IIUC.
Original Authors: Stefan Rusu, Simon Tam, Harry Muljono, Jason Stinson, David Ayers, Jonathan Chang, Raj Varada, Matt Ratta, Sailesh Kottapalli Some slides.
OPTERON (Advanced Micro Devices). History of the Opteron AMD's server & workstation processor line 2003: Original Opteron released o 32 & 64 bit processing.
INTEL COREI3 INTEL COREI5 INTEL COREI7 Maryam Zeb Roll#52 GFCW Peshawar.
Microprocessors I Time: Sundays & Tuesdays 07:30 to 8:45 Place: EE 4 ( New building) Lecturer: Bijan Vosoughi Vahdat Room: VP office, NE of Uni Office.
1 Microprocessor-based Systems Course 4 - Microprocessors.
Processor history / DX/SX SX/DX Pentium 1997 Pentium MMX
Cosc 2150 Current CPUs Intel and AMD processors. Notes The information is current as of Dec 5, 2014, unless otherwise noted. The information for this.
Copyright © 2006, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners Intel® Core™ Duo Processor.
Complete CompTIA A+ Guide to PCs, 6e Chapter 2: On the Motherboard © 2014 Pearson IT Certification
7-Aug-15 (1) CSC Computer Organization Lecture 6: A Historical Perspective of Pentium IA-32.
The AMD and Intel Architectures COMP Jamie Curtis.
Intel® 64-bit Platforms Platform Features. Agenda Introduction and Positioning of Intel® 64-bit Platforms Intel® 64-Bit Xeon™ Platforms Intel® Itanium®
1 COMPUTER ARCHITECTURE (for Erasmus students) Assoc.Prof. Stasys Maciulevičius Computer Dept.
Prepared by Careene McCallum-Rodney Hardware specification of a computer system.
Chapter 18 Multicore Computers
LOGO. Characteristics of Processors  Funtions  Is the central processing unit, performing all the processing, calculation and control systems.  The.
Adam Meyer, Michael Beck, Christopher Koch, and Patrick Gerber.
Microprocessors Chapter 1 powered by dj1. Slide 2 of 66Chapter 1 Objectives  Discuss the working of microprocessor  Discuss the various interfaces of.
Comp-TIA Standards.  AMD- (Advanced Micro Devices) An American multinational semiconductor company that develops computer processors and related technologies.
Simultaneous Multithreading: Maximizing On-Chip Parallelism Presented By: Daron Shrode Shey Liggett.
Practical PC, 7th Edition Chapter 17: Looking Under the Hood
 Design model for a computer  Named after John von Neuman  Instructions that tell the computer what to do are stored in memory  Stored program Memory.
Current Computer Architecture Trends CE 140 A1/A2 29 August 2003.
Topic:The Motorola M680X0 Family Team:Ulrike Eckardt Frederik Fleck André Kudra Jan Schuster Date:Thursday, 12/10/1998 CS-350 Computer Organization Term.
Company LOGO High Performance Processors Miguel J. González Blanco Miguel A. Padilla Puig Felix Rivera Rivas.
Complete CompTIA A+ Guide to PCs, 6e Chapter 2: On the Motherboard © 2014 Pearson IT Certification
Copyright © 2007 Heathkit Company, Inc. All Rights Reserved PC Fundamentals Presentation 27 – A Brief History of the Microprocessor.
Multi-core Programming Introduction Topics. Topics General Ideas Moore’s Law Amdahl's Law Processes and Threads Concurrency vs. Parallelism.
Pre-Pentium Intel Processors /
Computers organization & Assembly Language Chapter 0 INTRODUCTION TO COMPUTING Basic Concepts.
A+ Guide to Managing and Maintaining your PC, 6e Chapter 5 Processors and Chipsets (v0.9)
Hardware Trends. Contents Memory Hard Disks Processors Network Accessories Future.
High Performance Computing Processors Felix Noble Mirayma V. Rodriguez Agnes Velez Electric and Computer Engineer Department August 25, 2004.
History of Microprocessor MPIntroductionData BusAddress Bus
AMD Athlon 64 FX-55 PROCESSOR ARCHITECTURE
Outline  Over view  Design  Performance  Advantages and disadvantages  Examples  Conclusion  Bibliography.
Dezső Sima Evolution of Intel’s Basic Microarchitectures - 2 November 2012 Vers. 3.2.
1 Latest Generations of Multi Core Processors
Evolution of Microprocessors Microprocessor A microprocessor incorporates most of all the functions of a computer’s central processing unit on a single.
Hyper Threading Technology. Introduction Hyper-threading is a technology developed by Intel Corporation for it’s Xeon processors with a 533 MHz system.
THE BRIEF HISTORY OF 8085 MICROPROCESSOR & THEIR APPLICATIONS
MULTICORE PROCESSOR TECHNOLOGY.  Introduction  history  Why multi-core ?  What do you mean by multicore?  Multi core architecture  Comparison of.
Computer Architecture Introduction Lynn Choi Korea University.
Chap 4: Processors Mainly manufactured by Intel and AMD Important features of Processors: Processor Speed (900MHz, 3.2 GHz) Multiprocessing Capabilities.
PROCESSOR Ambika | shravani | namrata | saurabh | soumen.
I7’s Core. Intel’s Core i7 Content Overview Socket SSE 4.2 Instruction Set Cores –Intel Quickpath Interconnect –Nehalem - new micro-architecture –EP,
Central Processing Unit (CPU) The Computer’s Brain.
Acer America Motherboards Fred Smith. Acer America Acer Inc is a Taiwanese multinational hardware and electronics corporation headquartered in Xizhi,
High performance computing architecture examples Unit 2.
Intel Corporation LGA775 Socket Options Jim Rimpleman.
Microprocessor Design Process
THE COMPUTER MOTHERBOARD AND ITS COMPONENTS Compiled By: Jishnu Pradeep.
Hardware Architecture
Intel and AMD processors
Microprocessor Microarchitecture Introduction
Multiprocessing.
Central Processing Unit- CPU
What happens inside a CPU?
Evolution of Intel’s Basic Microarchitectures - 2
Intel’s Core i7 Processor
Introduction to Microprocessors
A Comprehensive Study of Intel Core i3, i5 and i7 family
Unit 2 Computer Systems HND in Computing and Systems Development
Comparison of AMD64, IA-32e extensions and the Itanium architecture
Presentation transcript:

COMPUTER ARCHITECTURE Assoc.Prof. Stasys Maciulevičius Computer Dept. stasys.maciulevicius@ktu.lt

Development of processor architecture Main processor development and production companies, creating a new processors to the various market segments, are seeking: enhance its performance; to reach this goul they: increase clock frequency use a variety of microarchitecture enhancements move to multi-core microarchitectures reduce energy consumption 2014 ©S.Maciulevičius ©S.Maciulevičius 2

Word length: from 32 to 64 bits 32-bit processor can do operations over integers to 232 or 4.3 billion 64-bit processor’s facilities reach 264 or round 18.4 quintillion (18,400,000,000,000,000,000); 32-bit processors and operating systems can support up to 4 gigabytes of memory, including only 2 gigabytes for applications; CAD/CAM and scientific calculations this is not enough at present 2014 ©S.Maciulevičius ©S.Maciulevičius 3

Data in processors Data type Register set Functional unit x86 word x86-64 word Integers GPR ALU 32 64 Addresses ALU or AGU Floating point numbers FPR FPU Vectors VR VPU 128 As can be seen, but differs only length of integers and addresses 2014 ©S.Maciulevičius ©S.Maciulevičius 4

x86-64 specification The x86-64 specification was designed by Advanced Micro Devices (AMD) as an extension of the x86 instruction set It allows far larger virtual and physical address spaces than x86, doubles the width of the integer registers from 32 to 64 bits, increases the number of integer registers, and provides other enhancements 2014 ©S.Maciulevičius ©S.Maciulevičius 5

Intel® EM64T Intel has released their “64-bit technology” in order to compete with AMD’s 64-bit technology Intel EM64T enhances system performance enabling access more than 4 GB memory Intel EM64T supports: 64-bit virtual address space 64-bit pointers 64-bit general purpose registers 64-bit integers 2014 ©S.Maciulevičius ©S.Maciulevičius 6

EM64T (and x86-64) registers 2014 ©S.Maciulevičius ©S.Maciulevičius 7

Multi-core processors Increase the frequency towards increasing performance, becoming more and more difficult Instead, the companies have focused their efforts to increase the parallelism - developed dual-core processors, later moving to a multi-core processors This way follow Intel, AMD, Motorola, Sun and other companies 2014 ©S.Maciulevičius ©S.Maciulevičius 8

Intel Core microarchitecture summary 2014 ©S.Maciulevičius

Intel Nehalem microarchitecture Nehalem is the codename for an Intel processor microarchitecture, successor to the Core microarchitecture The first processor released with the Nehalem architecture was the desktop Core i7, which was released in November 2008. Nehalem differs radically from Netburst. Nehalem-based microprocessors use higher clock speeds and are more energy-efficient. Hyper-threading is reintroduced, along with a reduction in L2 cache size, as well as an enlarged L3 cache that is shared by all cores 2014 ©S.Maciulevičius ©S.Maciulevičius 10

Intel Nehalem microarchitecture 64 KB L1 cache/core (32 KB L1 Data + 32 KB L1 Instruction) and 256 KB L2 cache/core 4–12 MB L3 cache Native (all processor cores on a single die) quad- and octa-core processors Intel QuickPath Interconnect in high-end models replacing the legacy front side bus Integration of PCI Express and DMI into the processor, replacing the northbridge Integrated memory controller supporting two or three memory channels of DDR3 SDRAM or four FB-DIMM2 channels Second-generation Intel Virtualization Technology 2014 ©S.Maciulevičius ©S.Maciulevičius 11

Some of Intel Nehalem processors Core i7 (LGA 1366) Core i7 (LGA 1156) Core i5 Core 2 Quad Processor Interface LGA 1366 LGA 1156 LGA 775 Number of Cores 4 Turbo Boost Yes No Hyper-Threading L1 Cache 32KB/32KB per core L2 Cache 256KB per core Up to 12MB shared L3 Cache 8MB shared Memory Channels 3 2 Max. Memory Rate DDR3-1066 DDR3-1333 DDR3-1600 Chipset X58 P55 X48 Price $284-$999 $285-$555 $199 $163-$316 2014 ©S.Maciulevičius ©S.Maciulevičius 12

Intel’s strategy Intel introduces new microprocessor architectures every 2 years as part of “Tick-Tock” strategy: 2014 ©S.Maciulevičius

Intel’s Sandy Bridge Sandy Bridge is the codename for a microarchitecture developed by Intel beginning in 2005 for CPUs in computers to replace the Nehalem microarchitecture It was designed for the full range of applications from mobile devices, laptop and desktop computers, to large enterprise servers Intel demonstrated a Sandy Bridge processor in 2009, and released first products in January 2011 based on the architecture . 2014 ©S.Maciulevičius

Intel’s Sandy Bridge Sandy Bridge main features: 32 nm fabrication process CPU clock rate 1.4–3.4 GHz, grafics clock rate 350-850 MHz (for different models) Turbo Boost 2.0 technology enables rise of clock rate till 3.8 GHz and 1350 MHz respectively 32 kB data + 32 kB instruction L1 cache (3 clocks) and 256 kB L2 cache (8 clocks) per core Shared L3 cache – 3-8 MB (25 clocks) . 2014 ©S.Maciulevičius

Intel’s Sandy Bridge Sandy Bridge has integrated graphic controller and specialized accelerator; it accelerates multimedia content processing significantly   Sandy Bridge supports DirectX 10.1 and OpenCL 1.1; its productivity far exceeds the performance of the first generation Core Advanced Vector Extensions (AVX) 256-bit instruction set with wider vectors, new extensible syntax and rich functionality . 2014 ©S.Maciulevičius

Intel’s Sandy Bridge Decoded micro-operation cache and enlarged, optimized branch predictor 256-bit/cycle ring bus interconnect between cores, graphics, cache and System Agent Domain Intel Quick Sync Video, hardware support for video encoding and decoding Up to 8 physical cores or 16 logical cores through Hyper-threading TDP of desktop CPUs is 35–95 W, for mobile CPUs –17-55 W . 2014 ©S.Maciulevičius

Intel’s Sandy Bridge caches . 2014 ©S.Maciulevičius

Sandy Bridge microarchitecture . 2014 ©S.Maciulevičius

Sandy Bridge: L0 cache . 2014 ©S.Maciulevičius

Sandy Bridge: ring bus Each core, each slice of L3 (LLC) cache, the on-die GPU, media engine and the system agent all have a stop on the ring bus The bus is made up of four independent rings: a data ring, request ring, acknowledge ring and snoop ring. Each stop for each ring can accept 32-bytes of data per clock . 2014 ©S.Maciulevičius

Intel’s Ivy Bridge Ivy Bridge is the first chip to use Intel's 22nm tri-gate transistors, which help scale frequency and reduce power consumption At a high level Ivy Bridge looks a lot like Sandy Bridge Ivy Bridge is considered a tick from the CPU perspective but a tock from the GPU perspective 2014 ©S.Maciulevičius

Intel’s Ivy Bridge 2014 ©S.Maciulevičius

Intel’s Ivy Bridge 2014 ©S.Maciulevičius

Ivy Bridge Configurable TDP Intel’s Ivy Bridge Ivy Bridge introduces configurable TDP that allows the platform to increase the CPU's TDP if given additional cooling, or decrease the TDP to fit into a smaller form factor 65W 55W 45W Ivy Bridge XE 33W 17W 13W Ivy Bridge ULV cTDP Up Nominal cTDP Down   Ivy Bridge Configurable TDP 2014 ©S.Maciulevičius

Intel’s Ivy Bridge Sandy Bridge brought a completely redesigned GPU core onto the processor die itself With Ivy Bridge the GPU remains on die but it grows more than the CPU does this generation Ivy Bridge GPU adds support for OpenCL 1.1, DirectX 11 and OpenGL 3.1 2014 ©S.Maciulevičius

From Nehalem to Hasswell 2014 ©S.Maciulevičius ©S.Maciulevičius 27

Intel’s Hasswell Haswell is the codename for a processor microarchitecture as the successor to the Ivy Bridge architecture Using the 22 nm process,  Intel is expected to release CPUs based on this microarchitecture around June 2, 2013 With Haswell, Intel will introduce a new low-power processor designed for convertible or 'hybrid' Ultrabooks 2014 ©S.Maciulevičius ©S.Maciulevičius 28

Intel’s Hasswell The Haswell architecture is specifically designed to optimize the power savings and performance benefits Haswell is expected to launch in three major forms: Desktop version (LGA1150 socket): Haswell-DT Mobile/Laptop version (PGA socket): Haswell-MB BGA version: 47W and 57W TDP classes: Haswell-H (For "All-in-one" systems, Mini-ITX form factor motherboards, and other small footprint formats.) 13.5W and 15W TDP classes (SoC): Haswell-ULT (For Intel's UltraBook platform.) 10W TDP class (SoC): Haswell-ULX (For tablets and certain UltraBook-class implementations.) 2013 2014 ©S.Maciulevičius ©S.Maciulevičius 29

Intel’s Hasswell Performance Compared to Ivy Bridge: Twice the vector processing performance At least 10% sequential CPU performance increase (8 execution ports per core versus 6) Up to double the performance of the integrated GPU 2014 ©S.Maciulevičius ©S.Maciulevičius 30

Intel’s Hasswell 2014 ©S.Maciulevičius ©S.Maciulevičius 31

2014 ©S.Maciulevičius ©S.Maciulevičius 32

CPU Idle Power 2014 ©S.Maciulevičius ©S.Maciulevičius 33

2014 ©S.Maciulevičius ©S.Maciulevičius 34

Intel’s Hasswell 2014 ©S.Maciulevičius ©S.Maciulevičius 35

Intel Hasswell 2013 ©S.Maciulevičius 36

AVX2 – FMA 2013 ©S.Maciulevičius 37

Some models CPU Freq. Turbo Boost Cache-Memory Cores / Threads TDP Core i7-4770K 3.5 GHz 3.9 GHz 8 MB 4 / 8 84 W Core i7-4770 3.4 GHz Core i7-4770S 3.1 GHz 65 W Core i7-4770T 2.5 GHz 3.7 GHz 45 W Core i7-4765T 2.0 GHz 3.0 GHz 35 W 2013 ©S.Maciulevičius 38