S OLVING L ITERAL E QUATIONS AND F ORMULAS Lesson 2-5.

Slides:



Advertisements
Similar presentations
This situation can be modeled using a Literal Equation.
Advertisements

Do Now 10/15/10 Take out HW from last night.  Textbook p #4-36 even Copy HW in your planner.  Textbook p. 187 #4-30 even  “Pop” Quiz sections.
Example 1 Solve ax b c for x. Then use the solution to solve Solve a literal equation + = += 2x SOLUTION STEP 1 Solve ax b c for x. += ax b c Write.
Introduction The formula for finding the area of a trapezoid, is a formula because it involves two or more variables that have specific and special relationships.
Solve an equation with variables on both sides
Solve an absolute value equation EXAMPLE 2 SOLUTION Rewrite the absolute value equation as two equations. Then solve each equation separately. x – 3 =
Introduction to Algebra
Evaluating Algebraic Expressions
Divide each side by 2. Write original equation. Write 3x + 2y = 8 so that y is a function of x. EXAMPLE 2 Rewrite an equation Subtract 3x from each side.
1.4 Rewriting Equations and Formulas. In section 1.3, we solved equations with one variable. Many equations involve more than one variable. We will solve.
Rewrite Formulas and Equations
1.4 Rewriting Equations and Formulas. In section 1.3, we solved equations with one variable. Many equations involve more than one variable. We will solve.
Warm-Up #2 Simplify the expression. 2. –6(m – 9) + 14m – 20
Equations and Inequalities
Warm-up: Define the following: Square root 8. Identity Radicand ratio
Subtract b from each side. Write original equation. Solve ax + b = c for x. STEP 1 SOLUTION Solve ax +b = c for x. Then use the solution to solve 2x +
3-7 HW: Pg #6-18eoe, 20-28e, 33-35,
Pre-Algebra Chapter 1 Notes.
3.6 U SING F ORMULAS AND L ITERAL E QUATIONS Objectives: Solve literal equations for specific variable. Use formulas to solve problems. Standard Addressed:
2.5 Literal Equations and Formulas I can rewrite and use literal equations and formulas.
EXAMPLE 1 Rewrite a formula with two variables Solve the formula C = 2πr for r. Then find the radius of a circle with a circumference of 44 inches. SOLUTION.
EXAMPLE 2 Rewrite a formula with three variables SOLUTION Solve the formula for w. STEP 1 P = 2l + 2w P – 2l = 2w P – 2l 2 = w Write perimeter formula.
Literal Equations and Formulas Honors Math – Grade 8.
Literal Equations. ANSWER 2a + 3 = Write an equation for “ 3 more than twice a is 24. ” ANSWER 64 ft 2 2.A square has a side length of 8 feet. Find.
Algebra 2 Chapter 1 Notes Equations and Inequalities Algebra 2 Chapter 1 Notes Equations and Inequalities 1.
Regents Review #1 Expressions & Equations (x – 4)(2x + 5) 3x 3 – 4x 2 + 2x – 1 (4a – 9) – (7a 2 + 5a + 9) 4x 2 + 8x + 1 = 0 (x – 5) 2 = 25 10x 3 5x 5 x.
EXAMPLE 1 Evaluate powers a. (–5) 4 b. –5 4 = (–5) (–5) (–5) (–5)= 625 = –( )= –625.
Solving Literal Equations and Formulas Objectives: I can solve literal equations (formulas) for a specified variable. I can apply these skills to solve.
Lesson 7. Literal Equations  I can identify literal equations.  I can rewrite and use literal equations Objectives.
Warm-Up Exercises Subtract b from each side. Write original equation. Solve ax + b = c for x. STEP 1 SOLUTION Solve ax + b = c for x. Then use the solution.
Using Formulas and Literal Equations Section 3.6.
(For help, go to Lessons 1-2, 1-4 and 1-6.) Evaluate each formula for the values given. 1.distance: d = rt, when r = 60 mi/h and t = 3 h 2.perimeter of.
Fate Addesso The volume of a cylinder is given by the equation V = r 2 h, where r is the radius and h is the height. Find the volume of a cylinder with:
3.8 Warm Up Warm Up Lesson Quiz Lesson Quiz Lesson Presentation Lesson Presentation Rewrite Equations and Formulas.
Warm Up Solve. 1. 3x = = z – 100 = w = 98.6 x = 34 y = 225 z = 121 w = 19.5 y 15.
Systems of Equations: Substitution
Using Formulas Lesson 3-4. Math Vocabulary Formula: A math statement, usually an equation, that is represented by variables and is used to solve for a.
Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall. Chapter 2 Equations, Inequalities and Problem Solving.
Formulas & Functions Formula – an algebraic expression that relates two or more real-life quantities.
Literal Equations.
EXAMPLE 1 Rewrite a formula with two variables Solve the formula C = 2πr for r. Then find the radius of a circle with a circumference of 44 inches. SOLUTION.
Binomial Radical Expressions ALGEBRA 2 LESSON Algebra 2 Lesson 7-3 (Page 374)
6-2 Solving Systems Using Substitution Hubarth Algebra.
EXAMPLE 1 Rewrite a formula with two variables Solve the formula C = 2πr for r. Then find the radius of a circle with a circumference of 44 inches. SOLUTION.
Algebra 2. Do this First! For Review Algebra 2.
Using Formulas and Literal Equations
Pre-Algebra Solve the circumference formula C = 2 r for r. Transforming Formulas Lesson 7-7 C = 2 r Use the Division Property of Equality. C2C2 2 r 2 =
Lesson 1-3 Solving Equations. Properties of Equality Reflexive Propertya = a Symmetric PropertyIf a = b, then b = a. Transitive PropertyIf a = b and b.
Copyright 2013, 2010, 2007, 2005, Pearson, Education, Inc.
Rewrite a linear equation
Algebra Bell-work 9/6/17 TURN IN YOUR HW!
Objectives Solve quadratic equations by completing the square.
simplify radical expressions involving addition and subtraction.
Rewrite a formula with three variables
1. Write an equation for “3 more than twice a is 24.”
Solve a literal equation
2 Understanding Variables and Solving Equations.
Literal Equations and Formulas
6-2 Solving Systems Using Substitution
3-8 Solving Equations and Formulas
1.4 Rewrite Formulas and Equations
Solving Systems using Substitution
Lesson 3.1 How do you solve one-step equations using subtraction, addition, division, and multiplication? Solve one-step equations by using inverse operations.
Solving Multi-Step Equations
Rewrite Equations and Formulas
Solving Multi-Step Equations
Lesson 7.
Literal Equations and Formulas
Adding and Subtracting Radicals
2-3 Equations With Variables on Both Sides
Presentation transcript:

S OLVING L ITERAL E QUATIONS AND F ORMULAS Lesson 2-5

A _______________ _______________ is an equation that involves two or more variables. literalequation Rewriting a Literal Equation: A.–2x + 5y = 12 Solve for y. _________________________________ Add 2x to each side to “move” the x-term (You are trying to get “y” by itself.) _________________________________ Simplify _________________________________ Divide by 5 _________________________________ Simplify – 2x + 2x + 5y = x 5y = x Note: I work most of my literal equations vertically because often there are no like terms to line up when adding or subtracting.

B.a – 2b = –10 Solve for b. ________________________________ Subtract a from each side. ________________________________ Simplify ________________________________ Divide by –2 ________________________________ Simplify a – 2b – a = – 10 – a – 2b = – 10 – a

Factor each of the following expressions: C. – 3x – 9 = ____ (x + 3) D. 2xy + 6y = ____ (x + 3) E.9x – 18 = ____ (x – 2) F. ax – bx = ___ ( ____ – ____ ) – 3 2y xab This is like doing the distributive property in reverse

Rewriting a Literal Equation with only (mostly) Variables G.mx + 2nx = p Solve for x. ______________________________________ Use the distributive property to factor out the x _______________________________________ Divide both sides by ________. _______________________________________ Simplify x(m + 2n) = p m + 2n

Rewriting Formulas A formula is an equation that states a __________________ among quantities. Formulas are special types of ______________ _____________________ Some formulas you should know are on the table below: relationship literal equations Formula NameFormulaDefinitions of Variables Perimeter of a rectangleP = 2l + 2wP = perimeter, l = length, w = width Circumference of a circleC = 2πrC = circumference, r = radius Area of a rectangleA = lwA = area, l = length, w = width Area of a triangleA = ½ bhA = area, b = base, h = height Area of a circleA = πr 2 A = area, r = radius Distance traveledd = rtD = distance, r = rate, t = time TemperatureC = degrees Celsius, F = degrees Fahrenheit

I.Josh is planting a rectangular garden. The perimeter of the garden is 120 yd., and the width is 20 yd. What is the length of the garden? Solve the formula for length: Substitute the value of P and w: ______________________________________________________ __________________________ P = 2l + 2w P – 2w = 2l + 2w – 2w P – 2w = 2l 40 = l