Mid-Atlantic Radio-Loud AGN Meeting, 27 September 2013 , STScI

Slides:



Advertisements
Similar presentations
Model Constraints from Multiwavelength Variability of Blazars
Advertisements

Tadayuki Takahashi Institute of Space and Astronautical Science (ISAS) Spectral and Temporal Variations of Blazars Hidetoshi Kubo(Kyoto), Jun Kataoka (Tokyo.
Multiwavelenth Observations Of Strong Flares From The Tev Blazar 1ES Reporter: 倪嘉阳 Arthor:H.Krawczynski, S.B. Hughes
Modeling the SED and variability of 3C66A in 2003/2004 Presented By Manasvita Joshi Ohio University, Athens, OH ISCRA, Erice, Italy 2006.
Moriond 04/02/09Benoit Lott New insight into Gamma-ray Blazars from the Fermi-LAT Benoît Lott CEN Bordeaux-Gradignan on behalf of the Fermi-LAT collaboration.
TeV blazars and their distance E. Prandini, Padova University & INFN G. Bonnoli, L. Maraschi, M. Mariotti and F. Tavecchio Cosmic Radiation Fields - Sources.
Multiwavelength Polarization as a Diagnostic of Jet Physics Markus Böttcher North-West University Potchefstroom, South Africa Most of this work done by:
Electron thermalization and emission from compact magnetized sources
THE HADRONIC MODEL OF ACTIVE GALACTIC NUCLEI A. Mastichiadis University of Athens.
Naoki Isobe, Yoshihiro Ueda (Kyoto University) Kousuke Sugimori, Nobuyuki Kawai (Tokyo Tech.) Hitishi Negoro (Nihon Univ.) Mutsumi Sugizaki, Masaru Matsuoka.
Markus B ӧ ttcher Ohio University Athens, OH VHE Gamma-Ray Induced Pair Cascades in Blazars and Radio Galaxies.
The questions: How can gamma-ray blazar statistics be parameterized? What parameters fit EGRET data best? –Blazar redshift distribution [ N vs z ] –Blazar.
Models for non-HBL VHE Gamma-Ray Blazars Markus Böttcher Ohio University, Athens, OH, USA “TeV Particle Astrophysics” SLAC, Menlo Park, CA, July 13 – 17,
Extragalactic Source Populations of VHE Gamma Rays Felix Aharonian Dublin Institute for Advanced Studies, Dublin Max-Planck-Institut f. Kernphysik, Heidelberg.
Numerical Modeling of Electromagnetic Radiation from AGN Jets Based on  -ray emission and spectral evolution of pair plasmas in AGN jets Bottcher et al.
1 Evidence for UHECR Acceleration from Fermi Observations of AGNs and GRBs Chuck Dermer Space Science Division US Naval Research Laboratory, Washington,
High-energy emission from the tidal disruption of stars by massive black holes Xiang-Yu Wang Nanjing University, China Collaborators: K. S. Cheng(HKU),
Theory of TeV AGNs (Buckley, Science, 1998) Amir Levinson, Tel Aviv University.
Multi-wavelength AGN spectra and modeling Paolo Giommi ASI.
1 Tuning in to Nature’s Tevatrons Stella Bradbury, University of Leeds T e V  -ray Astronomy the atmospheric Cherenkov technique the Whipple 10m telescope.
Gamma-ray Astronomy of XXI Century 100 MeV – 10 TeV.
Markos Georganopoulos 1,2 David Rivas 1,3 1 University of Maryland, Baltimore County 2 NASA Goddard Space Flight Center 3 Johns Hopkins University SUPER-EDDINGTON.
Studying emission mechanisms of AGN Dr. Karsten Berger Fermi School, June ©NASA.
Gamma Ray Sources Chuck Dermer Naval Research Laboratory Washington, DC USA TAUP 2007, Sendai, Japan, September 2007 Ground-based Cherenkov: VERITAS HESS.
Blazars and Neutrinos C. Dermer (Naval Research Laboratory) Collaborators: A. M. Atoyan (Universite de Montreal) M. Böttcher (Rice University) R. Schlickeiser.
Recent TeV Observations of Blazars & Connections to GLAST Frank Krennrich Iowa State University VERITAS Collaboration GSFC, October 24, 2002 AGN.
Leptonic and Hadronic Modeling of Gamma-Ray Blazars Markus Böttcher and Anita Reimer North-West University Universit ӓ t Innsbruck Potchefstroom, Innsbruck.
Time dependent modeling of AGN emission from inhomogeneous jets with Particle diffusion and localized acceleration Extreme-Astrophysics in an Ever-Changing.
Leptonic and Hadronic Models for the Spectral Energy Distributions and High- Energy Polarization of Blazars Markus Böttcher North-West University Potchefstroom.
STATISTICAL ACCELERATION and SPECTRAL ENERGY DISTRIBUTION in BLAZARS Enrico Massaro Physics Department, Spienza Univ. of Roma and Andrea Tramacere ISOC,
Lunch discussion on motivations for studying blazar variability Greg Madejski, SLAC Parts of this presentation use slides by Benoit Lott and Jun Kataoka.
1 Juri Poutanen University of Oulu, Finland (Stern, Poutanen, 2006, MNRAS, 372, 1217; Stern, Poutanen, 2007, MNRAS, submitted, astro- ph/ ) A new.
Multiwavelength observations of the gamma-ray blazars detected by AGILE Filippo D’Ammando INAF - Istituto di Astrofisica Spaziale e Fisica Cosmica Roma.
Determining the location of the GeV emitting zone in fast, bright blazars Amanda Dotson, UMBC Markos Georganopoulous, UMBC/GSFC Eileen Meyer, STScI MARLAM.
Roland Crocker Monash University The  -ray and radio glow of the Central Molecular Zone and the Galactic centre magnetic field.
Radio galaxy Elliptical Fanaroff-Riley type I “Misaligned” BL Lac (~ 60  ) Distance 3.5 Mpc Parameter Value  (J2000) 201   (J2000) -43 
Broadband Properties of Blazars
Fermi Observations of Gamma-ray Bursts Masanori Ohno(ISAS/JAXA) on behalf of Fermi LAT/GBM collaborations April 19, Deciphering the Ancient Universe.
Discovery of  rays from Star-Forming Galaxies New class of nonthermal sources/gamma-ray galaxies (concept of temperature breaks down at high energies)
MAGIC Recent AGN Observations. The MAGIC Telescopes Located at La Palma, altitude 2 200m First telescope in operation since 2004 Stereoscopic system in.
Multi-Zone Modeling of Spatially Non-uniform Cosmic Ray Sources Armen Atoyan Concordia University, Montreal FAA60 Barcelona, 7 November 2012.
Active Galactic Nuclei & High Energy Neutrino Astronomy 黎卓 北京大学 >TeV JUNO Workshop, IHEP, 2015/7/10.
We fit the high-state data to a model with three free parameters: the normalizations of the three radiation components. The figure below shows the fit.
1 High Energy Radiation from Black Holes Gamma Rays, Cosmic Rays, and Neutrinos Chuck Dermer Naval Research Laboratory Govind.
MA4: HIGH-ENERGY ASTROPHYSICS Critical situation of manpower : 1 person! Only «free research» based in OAT. Big collaborations based elsewhere (Fermi,
F. Volpe RICAP Rome Francesca Volpe for the H.E.S.S. collaboration Ecole Polytechnique - France H.E.S.S. observations of Active Galactic Nuclei.
Modeling the Emission Processes in Blazars Markus Böttcher Ohio University Athens, OH.
UHECRs from Black-Hole Jet Sources
Gamma-ray Bursts and Particle Acceleration Katsuaki Asano (Tokyo Institute of Technology) S.Inoue ( NAOJ ), P.Meszaros ( PSU )
ICRR 17/9/2001 Gamma-ray emission from AGN Qinghuan Luo School of Physics, University of Sydney.
Diffuse Emission and Unidentified Sources
Blazars: the gamma-ray view of AGILE on behalf of the AGILE WG-AGN Filippo D’Ammando Università degli Studi di Roma “Tor Vergata” INAF - Istituto di Astrofisica.
Dermer Deciphering the Ancient Universe with GRBs, Kyoto, Japan 22 April Recent Progress in Theoretical Understanding of GRBs from Fermi LAT and.
Fermi LAT Discovery of Gamma-rays from the Giant Radio Lobes of Centaurus A C.C. Teddy Cheung (NRC/NRL) Lukasz Stawarz (ISAS/JAXA) Yasushi Fukazawa (Hiroshima)
VHE  -ray Emission From Nearby FR I Radio Galaxies M. Ostrowski 1 & L. Stawarz 1,2 1 Astronomical Observatory, Jagiellonian University 2 Landessternwarte.
Modeling the SED and variability of 3C66A in Authors: Manasvita Joshi and Markus Böttcher (Ohio University) Abstract: An extensive multi-wavelength.
The non-thermal broadband spectral energy distribution of radio galaxies Gustavo E. Romero Instituto Argentino de Radio Astronomía (IAR-CCT La Plata CONICET)
Multi-wavelength emission models in blazars Gabriele Ghisellini INAF-Osservatorio di Brera with A. Celotti, R. Della Ceca, L. Foschini, G. Ghirlanda, F.
New constraints on light bosons from the high energy universe Denis WOUTERS Service de Physique des Particules Supervisor: Pierre BRUN D. Wouters and P.
MAGIC Max Planck Institut fürPhzsik The MAGIC Telescope ShangYu Sun A. Boller, L. Fortson, N. Galante, D. Paneque and B. Steinke On behalf of the Fermi,
Implications of VHE Emission in Gamma-Ray AGN Amir Levinson, Tel Aviv University.
UHE Cosmic Rays from Local GRBs Armen Atoyan (U.Montreal) collaboration: Charles Dermer (NRL) Stuart Wick (NRL, SMU) Physics at the End of Galactic Cosmic.
Photon breeding mechanism in jets and its observational signatures
Swift Monitoring of Fermi Blazars and Other Sources
Gamma Rays from the Radio Galaxy M87
MAGIC M.Teshima MPI für Physik, München (Werner-Heisenberg-Institut)
Broadband Properties of Blazars
Active Galactic Nuclei (AGN)
X-Ray Binaries as Gamma-Ray Sources
Variability Study of Fermi Blazars
Presentation transcript:

Mid-Atlantic Radio-Loud AGN Meeting, 27 September 2013 , STScI Radio-Loud AGNs as the Sources of the Ultra-High Energy Cosmic Rays Chuck Dermer (NRL) Naval Research Laboratory, Washington, DC charles.dermer@nrl.navy.mil Recent work with Matteo Cerruti (CfA), Catherine Boisson (LUTH), Andreas Zech (LUTH), Benoît Lott (CEN Bordeaux), Hajime Takami (KEK), Kohta Murase (IAS) We argue in favor of the hypothesis that UHECRs are accelerated in the jets of blazars. This hypothesis explains a number of unusual observations, including extra gamma-ray spectral components; unusual weakly-variable TeV gamma-ray blazars, including 1ES 0229+200 and 1ES 0347-121; flattening of the Stecker-Scully relation between GeV-TeV spectral index and redshift; and VHE gamma-ray production in FSRQs. Joint CTA and Fermi analysis of VHE blazars like KUV 00311-1938 can discriminate between photon-induced and UHECR-induced cascades. The search for gamma-ray echoes in the intergalactic magnetic field with strength B(IGMF) supports studies showing that B(IGMF) > 1e-18 G. Mid-Atlantic Radio-Loud AGN Meeting, 27 September 2013 , STScI Charles Dermer

Five Major Fermi/IACT Blazar Discoveries Observer Standard Blazar Model Leptonic jet model: Nonthermal synchrotron paradigm Associated SSC and EC component(s) Target photon sources: Accretion-disk radiation Broad-line region radiation IR radiation from molecular torus q BLR clouds G Relativistically Collimated Plasma Jet Dusty Torus Five Major Fermi/IACT Blazar Discoveries W Accretion Disk GeV spectral breaks in FSRQs, LSP/ISP blazars 3C 454.3 Rapid variability Shorter than the BH dynamical timescale VHE radiation from FSRQs 3C 279, 4C +21.35, PKS 1510-089 Two classes of BL Lac objects Strongly variable (Mrk 421, Mrk 501, PKS 2155-304) Weaky variable (1ES 0229+200, 0347-121, 1101-232) EBL/IGMF relationship Extra component in EBL deabsorbed blazar SED (Finke et al. 2010) Stecker-Scully relation Measuring the IGMF SMBH G Ambient Radiation Fields

Equipartition Blazar Modeling Use log-parabola function for electron distribution From observations of Lsyn, nsyn, and tvar, derive parameters for B, Doppler factor dD, gpk , r’b Use numerical model to adjust parameters to fit data, implying energy density of the external radiation field and (minimum) absolute jet power Constrain location of the g-ray emission site Explain GeV cutoff in FSRQs and LSP/ISP blazars 3-parameter model: amplitude K, curvature b, gp 3

Equipartition Relations Assume (3-parameter) log-parabola function for electron distribution Use observables and equipartition relations to derive G, B, gp , DR’b log-parabola width gives monoenergetic electron specrum Spectral Relation: What does equipartition mean? Equipartition Relation: 4

Solution to System of Equations Corrections for b ≠  Minimum jet power Dermer et al. (2012) 5

FSRQ Modeling 1 GeV Syn vs. EC beaming effect (Dermer 1995)

FSRQ Modeling: Dependence on b and tvar 1 GeV

BL Lac Modeling Similar to SEDs of Mrk 421, Mrk 501, but not PKS 2155-304, 1ES 0229+200, 1ES 1101-232. Contrary to flaring periods in Mrk 501

3C 279 Model Data from Hayashida et al. (2012)

3C 279 Model Data from Hayashida et al. (2012)

Implications External-field energy densities Jet Model Normally t = 0.1, implies that emission region near outer edge of the BLR, ~0.1-0.3 pc from SMBH Jet Model Colliding shells Jet Power Less than Eddington luminosity for MSMBH = (3-8)x108 Mo Particle Acceleration Second-order Fermi acceleration Extra high-energy spectral component

GeV Spectral Cutoff Code improvements Explain GeV spectral cutoff by scattering Ly a radiation (Cerruti et al. 2013) Code improvements Multi-line model Thermal spectrum for dust radiation (Ackermann et al. 2013) (Telfer et al. 2002) Electron distribution (Abdo et al. 2009) gg absorption (Poutanen & Stern 2011) Compton scattering model (Finke & Dermer 2011) 12

Spectral Fits to 3C 454.3 Cerruti et al. (2013) Epoch A: August 2008 low state (Abdo et al. 2009) Epoch B: November 2010 high state (Abdo et al. 2011; Wehrle et al. 2012) 13

UHECRs from Radio-Loud AGNs HiRes Collaboration 2008 Auger Collaboration 2009 UHECRs from Radio-Loud AGNs Standard one-zone synchrotron/SSC model Parameters: B, d, R Hillas condition: UHECR sources must satisfy: Extragalactic Adequate energy production rate within GZK volume Sources within GZK radius UHECRs can escape from acceleration region Mechanism to accelerate to ultra-high energies Murase, Dermer, Takami, Migliori (2012)

Gamma-ray and Cosmic-ray Induced TeV emission from Jetted Sources Weakly variable cascade radiation lgg g g n,e+ e+ p0, p p p g 2g n,e- e- ~100 Mpc ~ Gpc UHECR protons with energies ~1019 eV make ~1016 eV e that cascade in transit and Compton-scatter CMBR to TeV energies Essey, Kalashev, Kusenko, Beacom (2010, 2011)

Electromagnetic Signatures of UHECRs Photopair-induced cascade in IGM Polisensky & Ricotti 2011 Murase et al. 2012

>10 GeV Sources Explained by Cascade Emission Fermi-LAT analysis Pass 7 > 10 GeV Source class ROI between 8 and 15 degrees Use 2FGL source list to remove background sources g-ray induced cascades gg/Compton cascade Use Kneiske et al. (2004) for low and best-fit EBL Assume no suppression from IGMF ( 10-15 G < BIGMF < 10-20 G) Intrinsic source spectrum F(Eg) Eg-s , 5.6 GeV < Eg < 100 TeV UHECR-induced cascade Bethe-Heitler pair production, photopair production, expansion UHECR proton sources spectrum: F(Ep) ~ Ep-2.6exp(- Ep /Ep,c), Ep,c =1019 eV Assume no suppression from IGMF (10-10 G < BIGMF for protons) KUV 00311-1938 (z = 0.61) 2 > 100 GeV g-rays within 0.2o Takami, Murase, Dermer 2013 Normalization imposed to fit > 10 GeV Fermi-LAT spectrum from cascade emission 17

Predictions for CTA KUV 00311-1938 (z = 0.61) PG 1246+586 (z = 0.847) Detected by HESS at 5.1s with 52.5 hrs observation (Stegmann 2012) Lg > 3.5x 1046 erg/s LUHECR >1.1 x1047 erg/s PG 1246+586 (z = 0.847) Not yet detected by TeV instrument Lg > 7.5x1046 erg/s LUHECR >2.0x1047 erg/s Other sources detectable by 50 hour observations with CTA in the Neronov et al. (2012) list are Ton 116, B3 1307+433, 4C +55.17, and PKS 1958-179. PG 1246+586 (z = 0.847) 18

Pair Production and Photohadronic Opacity in 4C +21.35 Inject ultra-relativistic leptons: Dermer, Murase, Takami (2012) Make synchrotron g-rays Detection of 40-700 GeV g rays  x >> 0.1pc →←

Dermer MARLAM 26 September 2013 Summary Modeling New equipartition technique for fitting blazar SEDs Fits to 3C 279 Emission region at outer edge of BLR Explain GeV cutoffs of 3C 454.3 UHECRs: Blazars are the likely source of UHECRs, as can be tested with CTA UHECRs from blazars would explain extra high-energy spectral components Stecker-Scully relation, weakly variable BL Lac class VHE g-ray production in FSRQs Dermer MARLAM 26 September 2013

EBL Effects on Blazar Spectra GeV spectral breaks in FSRQs, LSP/ISP blazars Rapid variability Two classes of BL Lac objects VHE radiation from FSRQs EBL/IGMF relationship Dermer et al. 2011 GeV-TeV Spectral Index Difference DG Stecker-Scully (2006, 2010) relation Measurements of IGMF (>~ 10-15 G for persistent jet; >~10-18 G for jet active for observing period) Origin of hard component in deabsorbed BL Lac spectra? 21

Fermi Observations of 4C+21.35 PKS 1222+2163 = 4C+21.35, z = 0.432 Fermi-LAT spectrum Fermi LAT observations Major flares 2010 April and June sub-day scale variability hour-scale variability (Foschini et al. 2011) nFn peak at 1 – 10 GeV 22 22

GeV-TeV Connection 21 joint GeV-TeV sources Abdo et al. (2009) 46 Extragalactic Sources listed in the VHE sky Wagner’s catalog Neronov et al. (2012) source catalog of 13 candidates of VHE emission at z > 0.5 EBL effects greater on more distant blazars tgg(Ec,z) = 1 at Ec ≈ 100 GeV/z for 0.03 < z < 3 Model the >10 GeV Fermi-LAT emission by cascade g rays vs. cascades induced by UHECRs Find minimum required jet powers and predictions for CTA Neronov et al. 2012 23

Five Big Fermi/IACT Blazar Discoveries GeV spectral breaks in FSRQs, LSP/ISP blazars Rapid variability VHE radiation from FSRQs Two classes of BL Lac objects EBL/IGMF relationships LBAS, Abdo et al. 2009 24

Five Big Fermi/IACT Blazar Discoveries GeV spectral breaks in FSRQs, LSP/ISP blazars Rapid variability VHE radiation from FSRQs Two classes of BL Lac objects EBL/IGMF relationship 3C 454.3 Abdo et al. 2009 Ackermann et al. 2010 25

Five Big Fermi/IACT Blazar Discoveries GeV spectral breaks in FSRQs, LSP/ISP blazars Rapid variability Two classes of BL Lac objects VHE radiation from FSRQs EBL/IGMF relationships MAGIC observations of Mrk 501 2005 July 9 Feb 2010 VERITAS OBS of MRK 421, Albert et al. 2007 26

Five Big Fermi/IACT Blazar Discoveries GeV spectral breaks in FSRQs, LSP/ISP blazars Rapid variability Two classes of BL Lac objects VHE radiation from FSRQs EBL/IGMF relationship HESS obs. of PKS 2155-304 RS/c = 104M9 s tvar ~ 5 min = 300 s (?) M << 108 M0 28 July 2006 flare Aharonian et al. 2007 27

Five Big Fermi/IACT Blazar Discoveries GeV spectral breaks in FSRQs, LSP/ISP blazars Rapid variability Two classes of BL Lac objects VHE radiation from FSRQs EBL/IGMF relationship Ackermann et al. 2010 3C 454.3 28

MAGIC Observations of PKS 1222+2163 = 4C+21.35 z = 0.432, flare of 17 June 2010 MAGIC spectrum MAGIC observations Emission over 30 minutes Flaring on timescales of 10 minutes Lg ~ 1047 erg/s (TeV energies) Lg ~ 1048 erg/s (GeV energies) Black hole mass: 1.5x108 Mo (Wang et al. 2004)  extreme MAGIC light curve G = 3.7 Fermi-LAT and MAGIC spectrum Aleksic et al. (2011) Tanaka et al. (2011)

Five Big Fermi/IACT Blazar Discoveries GeV spectral breaks in FSRQs, LSP/ISP blazars Rapid variability Two classes of BL Lac objects VHE radiation from FSRQs EBL/IGMF relationship Mrk 421 Abdo et al. 2011a Variable class Mrk 421, Mrk 501 PKS 2155-305 0716+714, etc. Extreme sources tvar < RS/c Mrk 501 Abdo et al. 2011b 30

Five Big Fermi/IACT Blazar Discoveries Mrk 421 GeV spectral breaks in FSRQs, LSP/ISP blazars Rapid variability Two classes of BL Lac objects VHE radiation from FSRQs EBL/IGMF relationship Mrk 421 Mrk 421 tv = 4 d Abdo et al. 2011a B′=0.015G, d=12, R′=1.3x1017 cm Abdo et al. 2011a Abdo et al. 2011a Variable class Mrk 421, Mrk 501 PKS 2155-305 Extreme sources tvar < RS/c SSC Model fits time-averaged emission Mrk 501 B′=0.038G, d=21, R′=5.2x1016 cm Mrk 501 tv = 1 d Mrk 501 Abdo et al. 2011b Abdo et al. 2011b Abdo et al. 2011b 31

TeV BL Lac Objects Highly variable class Weakly variable class Extreme sources tvar < RS/c SSC Model fits Large inferred G factors Weakly variable class Weak Fermi LAT fluxes GeV-TeV spectrum: EBL, IGMF Mrk 421 Tavecchio et al. 2011 1ES 0229+200 z = 0.14 1ES 0347-121 z = 0.186 1ES 1101-232 z = 0.14 1ES 0548-322 z = 0.069 RGB J0152+0.17 z = 0.08 Abdo et al. 2011b Albert et al. 2007 Compton-scattered CMBR from extended jet/lobe Böttcher et al. 2008 32

GeV spectral breaks in FSRQs, LSP/ISP blazars Rapid variability VHE g rays from FSRQs GeV spectral breaks in FSRQs, LSP/ISP blazars Rapid variability Two classes of BL Lac objects VHE radiation from FSRQs EBL/IGMF relationship Senturk et al. 2013 And PKS 1510-089 With HESS and MAGIC 33