E = F/Q Electric Fields Chapter 21.

Slides:



Advertisements
Similar presentations
Electric Fields.
Advertisements

Electric Fields “forces at a distance”
Physics 152 Walker, Chapter 20 Electrostatic Potential Energy Electrostatic Potential.
Chapter 18: Electric Forces and Fields
February 16, 2010 Potential Difference and Electric Potential.
Electric Fields. What is an Electric Field? An electric field is a region of space surrounding a charged object. A stationary object experiences an electric.
Chapter 22 Electric Potential.
Chapter 21 Electric Fields.
Norah Ali Al-moneef king saud university
Electrical Energy and Capacitance
Chapter 18 – Electric Potential and Capacitance Section 1 Electric Potential Energy.
Chapter 24 Capacitance, Dielectrics, Electric Energy Storage
Capacitance and Dielectrics
Electrical Energy and Capacitance
Electrical Energy & Current. Introduction to Electric PE, Electric Potential, and Potential Difference Intro to Electric Potential.
W. Sautter Electrostatics is the study of the effects of stationary charges on each other in their surroundings. Charges are created by the transfer.
Electric Potential, Electric Energy and Capacitance
Electric Field Lines - a “map” of the strength of the electric field. The electric field is force per unit charge, so the field lines are sometimes called.
AP PHYSICS UNIT 8 GIANCOLI CH.16 & 17 Electric Charge, Fields and Potential.
Electric Potential and Electric Energy Chapter 17.
AP Physics III.A Electrostatics Origin of Electricity.
Electric Fields -Electric Field: the region around a charged particle through which a force is exerted on another charged particle -Test Charge: an idealized.
Electric Potential and Capacitance What’s a volt anyway? Presentation 2001 Dr. Phil Dauber as modified by R. McDermott.
1 Electric Potential Reading: Chapter 21 Chapter 21.
Chapter 18 Electrical Energy and Capacitance. Chapter 18 Objectives Electrical potential Electric Potential from a Point Charge Capacitance Parallel Plate.
Electrostatics. Electric Charge and Electric Field.
Physics for Bioscience (Part II) Electricity Magnetism Waves Sound Optics by Dr. Chittakorn polyon Department of Physics, Faculty of Science,
ELECTRIC POTENTIAL ENERGY AND ELECTRIC POTENTIAL POTENTIAL ENERGY ELECTRIC POTENTIAL WORK-ENERGY THEOREM CAPACITANCE COMBINATIONS OF CAPACITORS STORED.
Electric Potential A PowerPoint Presentation by
Electric Energy and Capacitance
CHAPTER 18 & 19 ELECTRIC FIELD, ELECTRICAL ENERGY and CAPACITANCE.
110/24/2015 Applied Physics Lecture 5  Electrostatics Electrical energy potential difference and electric potential potential energy of charged conductors.
Weds., Jan. 29, 2014PHYS , Dr. Andrew Brandt 1 PHYS 1442 – Section 004 Lecture #5 Wednesday January 29, 2014 Dr. Andrew Brandt CH 17 Electric Potential.
110/29/2015 Physics Lecture 4  Electrostatics Electric flux and Gauss’s law Electrical energy potential difference and electric potential potential energy.
Chapter 16 Electrical Energy and Capacitance. Objectives Electrical potential Electric Potential from a Point Charge Electron Volt Capacitance Parallel.
Static Electricity, Electric Forces, Electric Fields, Electric Potential Energy, Electric Potential, Capacitors.
Chapter 17 Electric Potential and Electric Energy; Capacitance.
Physics II, Pg 1 AP Physics Today’s Agenda AP Physics Today’s Agenda l CHAPTER 16 - ELECTRIC POTENTIAL AND ELECTRIC ENERGY; CAPACITANCE l Chp 16 problems.
Electrical Energy And Capacitance
Electrostatics.
Introduction to Electricity Electric charges come in two varieties. We have named these positive and negative. To be mathematically consistent all of electricity.
ELECTRIC FIELDS, POTENTIAL DIFFERENCE & CAPACITANCE.
CHAPTER 26 : CAPACITANCE AND DIELECTRICS
Static Electricity, Electric Forces, Electric Fields
Electric Field.
The Electric Field. The electric field E at a point in space is defined as an electric force F, acting on a positive test charge q divided by the magnitude.
21.2 Applications of Electric Field If you do work to lift a ball against gravity the PE of the ball will increase. The same works with charges. How do.
Chapter 25 Electric Potential. Electrical Potential Energy The electrostatic force is a conservative force, thus It is possible to define an electrical.
Uniform Electric Field between Parallel Charged Plates Constant force on a charged particle Constant force on a charged particle.
An electric force of 4.5 x N is measured between two particles. One particle has a charge of 2.0 x C & the other has a charge of 3.0 x
Static Electricity, Electric Forces, Electric Fields.
The basic components of an atom are:  Protons  Electrons  Neutrons Atoms are held together by electric force. Electric force is one of the most powerful.
AP Electrostatics The force between two isolated charges is governed by Coulomb’s Law: F e = k q 1 q 2 r2r2 q 1 and q 2 are charges r = distance k = 9.
Chapter 25 Electric Potential 25.1 Potential Difference and Electric Potential 25.2 Potential Differences in a Uniform Electric Field 25.3 Electric Potential.
Warm-Up: April 6/7, 2016  A black sphere with charge of 3.3 µC is pulled towards a gold sphere 4.7 cm away. The attractive force is 6.2 N. What is the.
Static Electricity, Electric Forces, Electric Fields.
Static Electricity, Electric Forces, Electric Fields.
Chapter 18 Electrical Energy and Capacitance Electrical Potential Energy Objectives 1. Define electrical potential energy 2. Compare the electrical.
Static Electricity / Electrostatics Where have you experienced this? –Shocked a friend? (or yourself) –Clothes in the dryer stick together –Stroke a cat.
Chapter 13 Electric Energy and Capacitance. Electric Potential Energy The electrostatic force is a conservative force It is possible to define an electrical.
Chapter 18 Electric Forces and Electric Fields The Origin of Electricity The electrical nature of matter is inherent in atomic structure. coulombs.
Electric Potential Energy and The Electric Potential
General Physics (PHY 2140) Lecture 4 Electrostatics
Physics Electric Fields
Electrostatics.
Static Electricity, Electric Forces, Electric Fields, Electric Potential Energy, Electric Potential, Capacitors.
Chapter 21, Electric Charge, and electric Field
Section 2: Applications of Electric Fields
Static Electricity, Electric Forces, Electric Fields, Electric Potential Energy, Electric Potential, Capacitors.
Presentation transcript:

E = F/Q Electric Fields Chapter 21

Electric Field The electric force is a field force, it applies force without touching (like the gravitational force). In the region around a charged object, an Electric Field is said to exist. An electric field exists in a region if space if a charge placed in that region experiences an electric force. The magnitude of an electric field at any given point is defined to be the ratio of the force on a charge at that point to the amount of charge. E = F/Q Electric field strength has units of Newtons/Coulomb (N/C).

Electric field equation for a point charge E is electric field strength, units: N/C E is a VECTOR q0 is a + test charge, units: C q is the charge producing the field, units: C r is the distance between charges, Units: m FE is the Electric Force, units: N kc is the coulomb constant, 8.99x109Nm2/C2

E-Field vs g-field

E-Field Calculus

Electric Fields Electric fields are represented by electric field lines (imaginary) and show the direction of the force at that point. Electric field direction is from a positive charge to a negative charge. Electric field lines (also known as electric flux) do not touch each other. Electric field line represents the path a small positive charge would move in the electric field.

Rules for Drawing Electric Field Lines The lines must originate on a positive charge (or infinity) and end on a negative charge (or infinity). The number of lines drawn leaving a positive charge or approaching a negative charge is proportional to the magnitude of the charge. The relative density of the field lines represents the magnitude of the field (where lines are closer together the field is stronger). No two field lines can cross each other. The line must be perpendicular to the surface of the charge

Field lines for a single positive and a single negative charge + - http://www.physicslessons.com/exp21b.htm

Field lines for a positive and negative charge The field is stronger where the lines are closer together

Field lines for two equal positive charges The point X in the diagram is a neutral point. There is no electric field at point X. + X

Field lines for two equal negative charges The point X in the diagram is a neutral point. There is no electric field at point X. - X

Electric Field between two charged plates + -

Predict the sign of the charges pictured below and the relative charge at each point. Justify your answer.

Two charges are placed on the x axis Two charges are placed on the x axis. The first, with a charge of +Q, is at the origin. The second, with a charge of -2Q, is at x = 1.00 m. Where on the x axis is the electric field equal to zero? This question involves an important concept that we haven't discussed yet: the field from a collection of charges is simply the vector sum of the fields from the individual charges. To find the places where the field is zero, simply add the field from the first charge to that of the second charge and see where they cancel each other out. The correct solution is x = 2.41 m

Gravitational Potential Lift an object into the air and we give it gravitational potential energy

Electric Potential Separate a positive charge from a negative charge and give it electric potential energy

Electric Potential Electric potential is defined as the electric potential energy per unit charge at a specified location. The units for volt, V The electric potential at a point a distance r from a point charge Q is given by: V = k Q / r The total potential at a point P is the sum of the potentials due to individual point charges present. V = EPE/Q

Equipotential lines for a point charge, and for a constant field No work is required to move a charge along equipotential lines.

Electric Potential Difference The electric potential difference is the difference in electric potential (V) between the final and the initial location when work is done upon a charge to change its potential energy. DV = DEPE/Q or DV = WonQ/Q One VOLT is the electric potential difference between two points when one Joule of work is done in moving one Coulomb of charge between the points. The SI unit of electric potential difference is the VOLT, named in honor of Alessandro Volta. Because electric potential difference is expressed in units of volts, it is sometimes referred to as the voltage.

Electric Potential in a Uniform Field In the uniform field between two charged plates there is a constant force on a charged particle. E = F/Q so F=EQ Work done by the uniform electric field W=Fx=EQx since DV = WonQ/Q then DV=EQx/Q = Ex so DV = Ex or DV = Ed x and d in the equation represent the distance the charge moves, and E is the electric field x

Electric Potential in a Uniform Field-Graphs +q F = qE d F Electric Potential Difference V= E-field x distance [V] = Nm/C = J/C = Volt Potential increases as moving against E-field. Work done to unit charge. V d

Electric Potential in a Uniform Field – different charges -q +q F = qE d Low potential High potential A B Potential energy for +q increases A -> B. However, potential energy for –q increases B -> A. Electric potential at B is higher than at A for both.

Electric Potential in a Uniform Field What if the movement is not parallel to the field? d   +q What if the movement is not parallel to the field? How much of work has been done on the charge? W = qE dcos() Electric potential changed by V = E d cos(). Important!! Motion perpendicular to E-field does not change potential.

Electric Field near a conductor A conductor is in electrostatic equilibrium when the charge distribution (the way the charge is distributed over the conductor) is fixed. Basically, when you charge a conductor the charge spreads itself out. At equilibrium, the charge and electric field follow these guidelines: the excess charge lies only at the surface of the conductor the electric field is zero within the solid part of the conductor the electric field at the surface of the conductor is perpendicular to the surface charge accumulates, and the field is strongest, on pointy parts of the conductor

E Compared to V near a charged conductor-graphs E (the field) is zero inside but V (the potential) is not zero inside the sphere, it is constant.

Gauss's Law The total of the electric flux out of a closed surface is equal to the charge enclosed divided by the permittivity. The electric flux through an area is defined as the electric field multiplied by the area of the surface projected in a plane perpendicular to the field. Gauss's Law is a general law applying to any closed surface. It is an important tool since it permits the assessment of the amount of enclosed charge by mapping the field on a surface outside the charge distribution. Gauss' Law, Integral Form:

Applications of Gauss' Law Gauss' law is a powerful tool for the calculation of electric fields when they originate from charge distributions of sufficient symmetry to apply it.

Millikan’s Oil-Drop Experiment – charge on an electron Millikan, with the help of his graduate student H. Fletcher, was able to show that the charges of the droplets of oil falling between two parallel charged plates always carried a whole number multiple of a basic charge, qe = 1.592 x 10-19 C. Today, the accepted value for the fundamental unit of charge is e = 1.602 x 10-19 C. He measured the charge on the oil drops by using a fine mist of oil sprayed from an atomizer. Most of the droplets get negatively charged as they picked up some small, unknown number of electrons as they passed through its nozzle. Some of the drops then fell through a hole in the top plate and drifted into the region between the two parallel plates between which a variable electric field had been established. The drops where lit with an intense light and viewed through a telescope. Once a drop was located, the voltage was varied controlling the electric field, E, to slow down the drop's descent. When the drop reached terminal velocity (mg = qE) it was tracked through the remainder of its fall and a ratio of mass per unit charge was recorded. Once mass was determined, charge on the drop could be calculated.

Same Charge, Different Voltage After touching Before touching A B insulating stand A B Same V Same Q After touching Before touching Low V Same V High V A B insulating stand A B Charge moves to lower potential Same Q Different Q

Storing Charge: The Parallel Plate Capacitor A capacitor is a device for storing charge. It is usually made up of two plates separated by a thin insulating material known as the dielectric. One plate of the capacitor is positively charged, while the other has negative charge. The charge stored in a capacitor is proportional to the potential difference between the two plates. For a capacitor with charge Q on the positive plate and -Q on the negative plate, the charge is proportional to the potential: If C is the capacitance, Q = CV. So the capacitance can be written as C = Q/V. The capacitance is a measure of the amount of charge a capacitor can store. It depends on area of the plates, A, and distance between them, d. Capacitance has units of farads (F).

Energy Stored: The Capacitor The energy stored in a capacitor is the same as the work needed to build up the charge on the plates. As the charge increases, the harder it is to add more. Potential energy is the charge multiplied by the potential, and as the charge builds up the potential does too. If the potential difference between the two plates is V at the end of the process, and 0 at the start, the average potential is V / 2. Multiplying this average potential by the charge gives the potential energy : PE = 1/2 Q V. Substituting in for Q, Q = CV, gives: U = 1/2 C V2 , where U is the energy stored, C is the capacitance and V is the voltage.

Another explanation for the 1/2 factor?? The reason is that in charging a capacitor, the first bit of charge is transferred while there is very little voltage on the capacitor (recall that the charge separation creates the voltage!). Only the last bit of charge is moved across the full voltage. Thus, on average, the full charge moves across only half the voltage!

Example: Parallel Plate Capacitor Consider a parallel plate capacitor made from two plates each 5 cm x 5 cm separated by 2 mm with vacuum in between. What is the capacitance of this capacitor? If a power supply puts 20 volts across this capacitor, what is the amount of charged stored by this capacitor?

Example: Parallel Plate Capacitor The capacitance depends on k, A, k and d: Cparallel plate = keoA/d where k = 1 for vacuum, A = 5 cm x 5 cm = 25 cm2 = 25 x 10-4 m2, d = 2 mm = 2 x 10-3 m, and eo = 8.85 x 10-12 C2/Nm2 , so C = (1)( 8.85 x 10-12 C2/Nm2)(25 x 10-4 m2)/ 2 x 10-3 m = 1.10 x 10-11 F = 11 pF . If we have a 20 volts across the capacitor, then to calculate the charge, Q, we can use: C = Q/V to get: Q = C*V = (11 x 10-12 F )(20 V) = 2.2 x 10-10 Coul = 0.22 nC = 220 pC.

Capacitors-Graphs V = e e Q = C V, so C is the slope E or electromotive force (emf) sometimes used instead of V for voltage source +Q V Q Q = C V, so C is the slope V = EPE/Q or EPE = VQ if EPE = W then W = QV so work is the area under the curve

Other types of capacitors Note: We can have other shapes for capacitors. These other shapes will have formulas for them that differ from the formula for parallel plates. These formulas will also show that the capacitance depends on the materials and shape of the capacitor.

Electron-Volts Another unit of energy that is commonly used in atomic and nuclear physics is the electron-volt. One electron-volt is defined as the energy a charge-field system gains or loses when a charge of magnitude e (an electron or a proton) is moved through a potential difference of 1 volt 1 eV = 1.60 x 10-19 J

Electric/Gravity Comparison Gravitational (on the earth) Electric Mass, m (Kg) Only 1 type Charge, Q (C) + and - g (m/s2=N/Kg) E-field (N/C) mgh (Nm = J) Potential energy QEd (J) gh (Nm/Kg) Gravitational potential Ed (Nm/C) Electric potential

Sources Physics by Zitzewitz www.glenbrook.k12.il.us/GBSSCI/PHYS/Class http://webphysics.davidson.edu/course_material/py230l_wc/demo/illustration22_1.html http://members.aol.com/physicsfirst/ http://physics.bu.edu/~duffy/PY106/Charge.html http://physics.bu.edu/~duffy/PY106/Electricfield.html http://dev.physicslab.org/Document.aspx?doctype=3&filename=AtomicNuclear_MillikanOilDrop.xml