Recall Last Lecture Biasing of BJT Applications of BJT

Slides:



Advertisements
Similar presentations
Transistor Amplifiers
Advertisements

Recall Last Lecture DC Analysis and Load Line
SMALL SIGNAL BJT AMPLIFIER
Voltage-Series Feedback
Cascode Stage. OUTLINE Review of BJT Amplifiers Cascode Stage Reading: Chapter 9.1.
Recall Lecture 13 Biasing of BJT Applications of BJT
Module 2: Part 2 Basic BJT Amplifiers. Learning Objectives After studying this module, the reader should have the ability to: n Explain graphically the.
Electronic Circuits Laboratory EE462G Lab #8 BJT Common Emitter Amplifier.
Electronics Principles & Applications Sixth Edition Chapter 6 Introduction to Small-Signal Amplifiers (student version) ©2003 Glencoe/McGraw-Hill Charles.
Chapter 13 Small-Signal Modeling and Linear Amplification
Transistors They are unidirectional current carrying devices with capability to control the current flowing through them The switch current can be controlled.
Recall Last Lecture Voltage Transfer Characteristic A plot of V o versus V i Use BE loop to obtain a current equation, I B in terms of V i Use CE loop.
09/16/2010© 2010 NTUST Today Course overview and information.
Chapter 6. Bipolar Junction Transistors (BJTs). Bipolar Junction Transistor Three terminal device Voltage between two terminals to control current flow.
Part B-3 AMPLIFIERS: Small signal low frequency transistor amplifier circuits: h-parameter representation of a transistor, Analysis of single stage transistor.
Voltage Divider Bias ENGI 242 ELEC February 2005ENGI 242/ELEC 2222 BJT Biasing 3 For the Voltage Divider Bias Configurations Draw Equivalent Input.
Transistor Amplifiers
Example.
0 Chap. 4 BJT transistors Widely used in amplifier circuits Formed by junction of 3 materials npn or pnp structure.
BJT Common-Emitter Amplifier By: Syahrul Ashikin School of Electrical System Engineering.
3-1 McGraw-Hill Copyright © 2001 by the McGraw-Hill Companies, Inc. All rights reserved. Chapter Three The Bipolar Junction Transistor.
© 2013 The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill 6-1 Electronics Principles & Applications Eighth Edition Chapter 6 Introduction.
Electronics Principles & Applications Fifth Edition Chapter 6 Introduction to Small-Signal Amplifiers ©1999 Glencoe/McGraw-Hill Charles A. Schuler.
© 2013 The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill 6-1 Electronics Principles & Applications Eighth Edition Chapter 6 Introduction.
EKT104 ANALOG ELECTRONIC CIRCUITS [LITAR ELEKTRONIK ANALOG] BASIC BJT AMPLIFIER (PART II) DR NIK ADILAH HANIN BINTI ZAHRI
EE 334 Midterm Review. Diode: Why we need to understand diode? The base emitter junction of the BJT behaves as a forward bias diode in amplifying applications.
ANALOG ELECTRONIC CIRCUITS 1
ANALOG ELECTRONIC CIRCUITS 1
BJT amplifier & small-signal concept
Introduction to BJT Amplifier BJT (Review). Still remember about BJT? The emitter current (i E ) is the sum of the collector current (i C ) and the base.
Chapter 1 Introduction to Electronics
1 TRANSISTOR AMPLIFIER CONFIGURATION -BJT Common-Emitter Amplifier- By: Syahrul Ashikin Azmi School of Electrical System Engineering.
TRANSISTOR AMPLIFIER CONFIGURATION -BJT Common-Emitter Amplifier-
Recall Last Lecture Introduction to BJT 3 modes of operation Cut-off Active Saturation Active mode operation of NPN.
BJT Amplifier. BJT Amplifiers: Overview Voltage Amplifier In an ideal voltage amplifier, the input impedance is infinite and the output impedance is.
SEM I 2008/09 LECTURE IV: C-E AC ANALYSIS II DMT 231 / 3 ELECTRONICS II Lecture IV AC Analysis II [BJT Common-Emitter Amplifier]
1 LECTURE 1: SMALL-SIGNAL HYBRID-Π EQUIVALENT CIRCUIT OF BIPOLAR TRANSISTOR (BJT) By: Syahrul Ashikin Azmi PPKSE.
SMALL-SIGNAL HYBRID-Π EQUIVALENT CIRCUIT. Content BJT – Small Signal Amplifier BJT complete Hybrid equivalent circuit BJT approximate Hybrid model Objectives.
Microelectronic Circuit Design, 3E McGraw-Hill Chapter 13 Small-Signal Modeling and Linear Amplification Microelectronic Circuit Design Richard C. Jaeger.
Recall Lecture 17 MOSFET DC Analysis 1.Using GS (SG) Loop to calculate V GS Remember that there is NO gate current! 2.Assume in saturation Calculate I.
Prepared by: Garima Devpriya ( ) Jamila Kharodawala ( ) Megha Sharma ( ) ELECTRONICS DEVICES AND CIRCUITS G.H.Patel.
Intro to BJT Amplifier Circuits. In this Lecture, we will:  Discuss how a BJT is used as a switch (use this as a frame of reference).  Understand the.
The Bipolar Junction Transistor
ECE 333 Linear Electronics Chapter 7 Transistor Amplifiers How a MOSFET or BJT can be used to make an amplifier  linear amplification  model the linear.
BJT transistors Summary of DC problem 2 Bias transistors so that they operate in the linear region B-E junction forward biased, C-E junction reversed.
SUB.TEACHER:- MR.PRAVIN BARAD NAME:-SAGAR KUMBHANI ( ) -VIKRAMSINH JADAV( ) -PARECHA TUSHAR( ) TOPIC:-LINEAR AMPLIFIER(BJT.
Dr. Nasim Zafar Electronics 1 - EEE 231 Fall Semester – 2012 COMSATS Institute of Information Technology Virtual campus Islamabad.
LECTURE 1: BASIC BJT AMPLIFIER -AC ANALYSIS-
Recall Last Lecture Biasing of BJT Applications of BJT
Recall Last Lecture Biasing of BJT Three types of biasing
Chapter 1 Introduction to Electronics
Recall Last Lecture Biasing of BJT Three types of biasing
Recall Last Lecture Biasing of BJT Three types of biasing
Lecture 10 Bipolar Junction Transistor (BJT)
Recall Lecture 17 MOSFET DC Analysis
Bipolar Junction Transistor
Recall Last Lecture Introduction to BJT Amplifier
Recall Lecture 14 Introduction to BJT Amplifier
Recall Lecture 17 MOSFET DC Analysis
SMALL SIGNAL ANALYSIS OF CE AMPLIFIER
Recall Lecture 13 Biasing of BJT Voltage Divider Biasing Circuit.
Recall Lecture 17 MOSFET DC Analysis
Recall Last Lecture Introduction to BJT Amplifier
Recall Last Lecture Introduction to BJT Amplifier
Recall Last Lecture Introduction to BJT Amplifier
Recall Lecture 17 MOSFET DC Analysis
Bipolar Junction Transistor
Common-Collector (Emitter-Follower) Amplifier
Recall Last Lecture Introduction to BJT Amplifier
Recall Last Lecture Introduction to BJT Amplifier
Presentation transcript:

Recall Last Lecture Biasing of BJT Applications of BJT Three types of biasing Fixed Bias Biasing Circuit Biasing using Collector to Base Feedback Resistor Voltage Divider Biasing Circuit Applications of BJT As digital logic gates NOT NOR

Chapter 5 basic bjt amplifiers (AC ANALYSIS)

The Bipolar Linear Amplifier Bipolar transistors have been traditionally used in linear amplifier circuits because of their relatively high gain. To use the circuit as an amplifier, the transistor needs to be biased with a dc voltage at a quiescent point (Q-point) such that the transistor is biased in the forward-active region. If a time-varying signal is superimposed on the dc input voltage, the output voltage will change along the transfer curve producing a time-varying output voltage. If the time-varying output voltage is directly proportional to and larger than the time-varying input voltage, then the circuit is a linear amplifier.

The linear amplifier applies superposition principle Response – sum of responses of the circuit for each input signals alone So, for linear amplifier, DC analysis is performed with AC source turns off or set to zero AC analysis is performed with DC source set to zero

EXAMPLE iC , iB and iE, vCE and vBE Sum of both ac and dc components

Graphical Analysis and ac Equivalent Circuit From the concept of small signal, all the time-varying signals are superimposed on dc values. Then: and

PERFORMING DC and AC analysis DC ANALYSIS AC ANALYSIS Turn off DC SUPPLY = short circuit Turn off AC SUPPLY = short circuit

DO YOU STILL REMEMBER?

Let’s assume that Model 2 is used IDQ VDQ = V rd id DC equivalent AC equivalent

CALCULATE DC CURRENT, ID CALCULATE AC CURRENT, id DC ANALYSIS AC ANALYSIS DIODE = MODEL 1 ,2 OR 3 CALCULATE rd DIODE = RESISTOR, rd CALCULATE DC CURRENT, ID CALCULATE AC CURRENT, id

What about bjt?

AC equivalent circuit – Small-Signal Hybrid-π Equivalent ib OR

THE SMALL SIGNAL PARAMETERS The resistance rπ is called diffusion resistance or B-E input resistance. It is connected between Base and Emitter terminals The term gm is called a transconductance ro = VA / ICQ rO = small signal transistor output resistance VA is normally equals to , hence, if that is the case, rO =   open circuit

Hence from the equation of the AC parameters, we HAVE to perform DC analysis first in order to calculate them.

EXAMPLE The transistor parameter are  = 125 and VA=200V. A value of gm = 200 mA/V is desired. Determine the collector current, ICQ and then find r and ro ANSWERS: ICQ = 5.2 mA, r= 0.625 k and ro = 38.5 k

Voltage Gain, AV = vo / vs Current Gain, Ai = iout / is CALCULATION OF GAIN Voltage Gain, AV = vo / vs Current Gain, Ai = iout / is

Small-Signal Voltage Gain: Av = Vo / Vs ib

Common-Emitter Amplifier

Remember that for Common Emitter Amplifier, the output is measured at the collector terminal. the gain is a negative value Three types of common emitter Emitter grounded With RE With bypass capacitor CE

STEPS OUTPUT SIDE Get the equivalent resistance at the output side, ROUT Get the vo equation where vo = - gm vbeROUT INPUT SIDE Calculate Ri Get vbe in terms of vs – eg: using voltage divider. Go back to vo equation and calculate the voltage gain

Emitter Grounded β = 100 VBE = 0.7V VA = 100 V VCC = 12 V RC = 6 k 93.7 k 6.3 k 0.5 k β = 100 VBE = 0.7V VA = 100 V Voltage Divider biasing: Change to Thevenin Equivalent RTH = 5.9 k VTH = 0.756 V

Perform DC analysis to obtain the value of IC BE loop: 5.9IB + 0.7 – 0.756 = 0 IB = 0.00949 IC = βIB = 0.949 mA Calculate the small-signal parameters r = 2.74 k , ro = 105.37 k and gm = 36.5 mA/V

Emitter Grounded β = 100 VBE = 0.7V VA = 100 V VCC = 12 V RC = 6 k

Follow the steps 1. Rout = ro || RC = 5.677 k vbe Follow the steps 1. Rout = ro || RC = 5.677 k 2. Equation of vo : vo = - ( ro || RC ) gmvbe= - 36.5 ( 5.677) vbe = -207.21 vbe 3. Calculate Ri  RTH||r = 1.87 k 4. vbe in terms of vs  use voltage divider: vbe = [ Ri / ( Ri + Rs )] * vs = 0.789 vs so vs = 1.2674 vbe

5. Go back to equation of vo and calculate the gain vbe so: vs = 1.2674 vbe 5. Go back to equation of vo and calculate the gain vo / vs = -207.21 vbe / 1. 2674 vbe vo / vs = - 207.21 / 1.2674 vo / vs = -163.5 AV = vo / vs = - 163.5

TYPE 2: Emitter terminal connected with RE – normally ro =  in this type New parameter: input resistance seen from the base, Rib = vb / ib VCC = 5 V RC = 5.6 k 250 k 75 k 0.5 k RE = 0.6 k β = 120 VBE = 0.7V VA = 

0.5 k 57.7 k RC = 6 k 7.46 k RE = 0.6 k vb

2. Equation of vo : vo = - RC  ib= - 720 ib vb 1. Rout = RC = 6 k 2. Equation of vo : vo = - RC  ib= - 720 ib 3. Calculate Rib  using KVL: ib r + ie RE - vb = 0 but ie = (1+ ) ib = 121 ib so: ib [ 121(0.6) + 7.46 ] = vb  Rib = 80.06 k 4. Calculate Ri  RTH||Rib = 33.53 k 5. vb in terms of vs  use voltage divider: vb = [ Ri / ( Ri + Rs )] * vs = 0.9853 vs vs = 1.0149 vb

AV = vo / vs = - 8.86 vb so: vs = 1.0149 vb 6. Go back to equation of vo vo = - 720 ib = - 720 [ vb / Rib ] = -720 vb / 80.06 = - 8.993 vb vo / vs = - 8.993 vb / 1.0149 vb vo / vs = - 8.86 AV = vo / vs = - 8.86