MOS Inverter: Static Characteristics

Slides:



Advertisements
Similar presentations
EE 447 VLSI Design Lecture 7: Combinational Circuits
Advertisements

Design and Implementation of VLSI Systems (EN1600)
Logic Gate Delay Modeling -1 Bishnu Prasad Das Research Scholar CEDT, IISc, Bangalore
Topics Electrical properties of static combinational gates:
DC Response DC Response: Vout vs. Vin for a gate Ex: Inverter
Lecture 5: DC & Transient Response
CMOS Family.
Lecture 9: Combinational Circuit Design. CMOS VLSI DesignCMOS VLSI Design 4th Ed. 10: Combinational Circuits2 Outline  Bubble Pushing  Compound Gates.
A Look at Chapter 4: Circuit Characterization and Performance Estimation Knowing the source of delays in CMOS gates and being able to estimate them efficiently.
ISLAMIC UNIVERSITY OF GAZA Faculty of Engineering Computer Engineering Department EELE3321: Digital Electronics Course Asst. Prof. Mohammed Alhanjouri.
Introduction to CMOS VLSI Design Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004.
Introduction to CMOS VLSI Design Lecture 5 CMOS Transistor Theory
VLSI Design CMOS Transistor Theory. EE 447 VLSI Design 3: CMOS Transistor Theory2 Outline Introduction MOS Capacitor nMOS I-V Characteristics pMOS I-V.
Microelectronic Circuits, Sixth Edition Sedra/Smith Copyright © 2010 by Oxford University Press, Inc. C H A P T E R 13 CMOS Digital Logic Circuits.
CMOS gates Electrical characteristics and timing TTL gates
Introduction to CMOS VLSI Design Combinational Circuits.
Voltage Transfer Characteristic for TTL
ECES 352 Winter 2007Ch 11 Bipolar Digital Pt. 21 Simplified Transistor - Transistor Logic (TTL) *Transistor - Transistor Logic (TTL) *Simplified form of.
Introduction to CMOS VLSI Design Lecture 4: DC & Transient Response
Introduction to CMOS VLSI Design Lecture 4: DC & Transient Response Credits: David Harris Harvey Mudd College (Material taken/adapted from Harris’ lecture.
Lecture #24 Gates to circuits
Introduction to CMOS VLSI Design Lecture 3: CMOS Transistor Theory
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 22: Material Review Prof. Sherief Reda Division of Engineering, Brown University.
Outline Noise Margins Transient Analysis Delay Estimation
DC and transient responses Lezione 3
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture10: Delay Estimation Prof. Sherief Reda Division of Engineering, Brown University.
CMOS VLSI Design4: DC and Transient ResponseSlide 1 EE466: VLSI Design Lecture 05: DC and transient response – CMOS Inverters.
EE4800 CMOS Digital IC Design & Analysis
Introduction to CMOS VLSI Design Lecture 4: DC & Transient Response Greco/Cin-UFPE (Material taken/adapted from Harris’ lecture notes)
EE 447 VLSI Design 4: DC and Transient Response1 VLSI Design DC & Transient Response.
Transistor Characteristics EMT 251. Outline Introduction MOS Capacitor nMOS I-V Characteristics (ideal) pMOS I-V Characteristics (ideal)
The CMOS Inverter Slides adapted from:
Digital Integrated Circuits© Prentice Hall 1995 Inverter THE INVERTERS.
Digital logic families
1 Delay Estimation Most digital designs have multiple data paths some of which are not critical. The critical path is defined as the path the offers the.
Mary Jane Irwin ( ) Modified by Dr. George Engel (SIUE)
Mary Jane Irwin ( ) CSE477 VLSI Digital Circuits Fall 2002 Lecture 04: CMOS Inverter (static view) Mary Jane.
Ch 10 MOSFETs and MOS Digital Circuits
Dec 2010Performance of CMOS Circuits 1 Instructed by Shmuel Wimer Eng. School, Bar-Ilan University Credits: David Harris Harvey Mudd College (Some material.
Electronic Circuits Laboratory EE462G Lab #7 NMOS and CMOS Logic Circuits.
EE210 Digital Electronics Class Lecture 2 March 27, 2008
Chapter 07 Electronic Analysis of CMOS Logic Gates
Modern VLSI Design 2e: Chapter 3 Copyright  1998 Prentice Hall PTR Topics n Electrical properties of static combinational gates: –transfer characteristics;
Device Characterization ECE/ChE 4752: Microelectronics Processing Laboratory Gary S. May April 1, 2004.
Introduction to CMOS VLSI Design Lecture 6: Logical Effort
Linear Delay Model In general the propagation delay of a gate can be written as: d = f + p –p is the delay due to intrinsic capacitance. –f is the effort.
VLSI Design Lecture 5: Logic Gates Mohammad Arjomand CE Department Sharif Univ. of Tech. Adapted with modifications from Wayne Wolf’s lecture notes.
Introduction to CMOS VLSI Design MOS devices: static and dynamic behavior.
Digital Integrated Circuits A Design Perspective
Electronic Circuits Laboratory EE462G Lab #7 NMOS and CMOS Logic Circuits.
EE210 Digital Electronics Class Lecture 10 April 08, 2009
FPGA-Based System Design: Chapter 2 Copyright  2004 Prentice Hall PTR Topics n Logic gate delay. n Logic gate power consumption. n Driving large loads.
Solid-State Devices & Circuits
Chapter 6 Copyright © 2004 The McGraw-Hill Companies, Inc. All rights reserved. High-Speed CMOS Logic Design.
Modern VLSI Design 3e: Chapter 3 Copyright  1998, 2002 Prentice Hall PTR Topics n Electrical properties of static combinational gates: –transfer characteristics;
EE415 VLSI Design THE INVERTER [Adapted from Rabaey’s Digital Integrated Circuits, ©2002, J. Rabaey et al.]
Circuit Delay Performance Estimation Most digital designs have multiple signal paths and the slowest one of these paths is called the critical path Timing.
Introduction to CMOS VLSI Design CMOS Transistor Theory
7-1 Integrated Microsystems Lab. EE372 VLSI SYSTEM DESIGNE. Yoon MOS Inverter — All essential features of MOS logic gates DC and transient characteristics.
Wujie Wen, Assistant Professor Department of ECE
COE 360 Principles of VLSI Design Delay. 2 Definitions.
CMOS VLSI Design Lecture 4: DC & Transient Response Younglok Kim Sogang University Fall 2006.
Introduction to CMOS VLSI Design Chapter 4 Delay
DC & Transient Response
Introduction to CMOS VLSI Design Lecture 5: DC & Transient Response
UNIT-II Stick Diagrams
Lecture 5: DC & Transient Response
Introduction to CMOS VLSI Design Lecture 4: DC & Transient Response
Presentation transcript:

MOS Inverter: Static Characteristics In this case the nMOS device is in Cut-off and hence conducts no current. The pMOS is in linear region and acts as a resistor, the voltage drop across this resistor is very small in magnitude and the output voltage level is high. As Vin is increased the fall in the output voltage is not abrupt but gradual (refer to the inverter VTC curve) and has a finite slope. The two critical voltage points on the VTC are when the slope of the Vout(Vin) charateristic becomes –1. The inverter is the most fundamental logic gate that performs a Boolean operation on a single input variable. Many basic principles employed in the design and analysis of MOS inverters can be directly applied to more complex circuits such as NAND, NOR and XOR, XNOR gates. The inverter operation is such that, for very low input voltage levels the output voltage Vout is equal to a high value VOH (output high voltage).

MOS INVERTER The smaller input voltage satisfying dVout/dVin=-1 is called the input low voltage VIL and the larger input voltage satisfying this condition is called the input high voltage VIH. Both these voltages play significant roles in determining the Noise Margins of inverter circuits. As the input voltage is further increased, the output voltage continues to drop and reaches a value of VOL (output low voltage) when the input voltage is equal to VOH. We can now define the inverter threshold voltage as the point where Vin=Vout on the voltage transfer characteristic (VTC) curve. From this analysis of inverter operation we come up with five critical voltages, which characterize the behavior of the inverter circuit. These are VOL, VOH, VIL, VIH and Vth and are defined as follows: VOH: maximum output voltage; “1”. VOL: Minimum output voltage; “0”. VIL: Maximum input voltage which can be interpreted as a logic 0. VIH: Minimum input voltage which can be interpreted as a logic 1.

MOS INVERTER VTC & Ids Ids Vs Time

NOISE MARGIN Noise Margin is a parameter closely related to the input-output voltage characteristics. Noise Margin allows us to determine the allowable noise voltage on the input of a gate so that the output will not be affected. Noise Margin is usually defined in terms of Low Noise Margin (NML) and High Noise Margin (NMH). NML is the difference in magnitude between the maximum low output voltage of the driving gate and the maximum input low voltage recognized by the driven gate. NMH is the difference in magnitude between the minimum high output voltage of the driving gate and the minimum input high voltage recognized by the receiving gate. The ideal operating point with regard to NOISE MARGIN is to have the minimum High input voltage (VIH) be equal to the maximum Low input voltage (VIL).

NOISE MARGINS HIGH & LOW DEFINITIONS Shaded areas represent valid regions of the input and output voltages. With Idsn = Idsp =0, implying that n-type device is in saturation while p-device is in linear region we have that: NML NMH VIN Vout VOH VOL Transition Region If the pMOS transistor is turned off that is, the input voltage exceeds VDD + Vtp, with the nMOS device operating in linear region, but with Idsn=Idsp=0 then we have that: VIH VIL

Noise Margins How much noise can a gate input see before it does not recognize the input?

Logic Levels To maximize noise margins, select logic levels at unity gain point of DC transfer characteristic

Transient Response DC analysis tells us Vout if Vin is constant Transient analysis tells us Vout(t) if Vin(t) changes Requires solving differential equations Input is usually considered to be a step or ramp From 0 to VDD or vice versa

Inverter Step Response Ex: find step response of inverter driving load cap

Delay Definitions tpdr: rising propagation delay From input to rising output crossing VDD/2 tpdf: falling propagation delay From input to falling output crossing VDD/2 tpd: average propagation delay tpd = (tpdr + tpdf)/2 tr: rise time From output crossing 0.2 VDD to 0.8 VDD tf: fall time From output crossing 0.8 VDD to 0.2 VDD

Delay Definitions tcdr: rising contamination delay From input to rising output crossing VDD/2 tcdf: falling contamination delay From input to falling output crossing VDD/2 tcd: average contamination delay tpd = (tcdr + tcdf)/2

Simulated Inverter Delay Solving differential equations by hand is too hard SPICE simulator solves the equations numerically Uses more accurate I-V models too! But simulations take time to write

Delay Estimation We would like to be able to easily estimate delay Not as accurate as simulation But easier to ask “What if?” The step response usually looks like a 1st order RC response with a decaying exponential. Use RC delay models to estimate delay C = total capacitance on output node Use effective resistance R So that tpd = RC Characterize transistors by finding their effective R Depends on average current as gate switches

RC Delay Models Use equivalent circuits for MOS transistors Ideal switch + capacitance and ON resistance Unit nMOS has resistance R, capacitance C Unit pMOS has resistance 2R, capacitance C Capacitance proportional to width Resistance inversely proportional to width

Example: 3-input NAND Sketch a 3-input NAND with transistor widths chosen to achieve effective rise and fall resistances equal to a unit inverter (R).

Example: 3-input NAND Sketch a 3-input NAND with transistor widths chosen to achieve effective rise and fall resistances equal to a unit inverter (R).

3-input NAND Caps Annotate the 3-input NAND gate with gate and diffusion capacitance.

3-input NAND Caps Annotate the 3-input NAND gate with gate and diffusion capacitance.

Elmore Delay ON transistors look like resistors Pullup or pulldown network modeled as RC ladder Elmore delay of RC ladder

Example: 2-input NAND Estimate rising and falling propagation delays of a 2-input NAND driving h identical gates.

Example: 2-input NAND Estimate rising and falling propagation delays of a 2-input NAND driving h identical gates.

Example: 2-input NAND Estimate rising and falling propagation delays of a 2-input NAND driving h identical gates.

Delay Components Delay has two parts Effort delay Parasitic delay 6 or 7 RC Independent of load Effort delay 4h RC Proportional to load capacitance

Contamination Delay Best-case (contamination) delay can be substantially less than propagation delay. Ex: If both inputs fall simultaneously

Diffusion Capacitance we assumed contacted diffusion on every s / d. Good layout minimizes diffusion area Ex: NAND3 layout shares one diffusion contact Reduces output capacitance by 2C Merged uncontacted diffusion might help too

Layout Comparison Which layout is better?