Geometric Sequences Section 3.2.1.

Slides:



Advertisements
Similar presentations
Choi 2012 Arithmetic Sequence A sequence like 2, 5, 8, 11,…, where the difference between consecutive terms is a constant, is called an arithmetic sequence.
Advertisements

OBJECTIVE We will find the missing terms in an arithmetic and a geometric sequence by looking for a pattern and using the formula.
Section 5.7 Arithmetic and Geometric Sequences
Unit 6: Sequences & Series
Warm up 1. Determine if the sequence is arithmetic. If it is, find the common difference. 35, 32, 29, 26, Given the first term and the common difference.
Last Time Arithmetic SequenceArithmetic Series List of numbers with a common difference between consecutive terms Ex. 1, 3, 5, 7, 9 Sum of an arithmetic.
A geometric sequence is a list of terms separated by a constant ratio, the number multiplied by each consecutive term in a geometric sequence. A geometric.
 Find the next three terms in each sequence:  5, 15, 45, 135, _____, _____, _____  0.5, 2, 8, 32, _____, _____, _____  -32, 16, -8, 4, _____, _____,
A sequence is geometric if the ratios of consecutive terms are the same. That means if each term is found by multiplying the preceding term by the same.
Choi Geometric Sequence A sequence like 3, 9, 27, 81,…, where the ratio between consecutive terms is a constant, is called a geometric sequence. In a.
Warm Up Section 3.6B (1). Show that f(x) = 3x + 5 and g(x) = are inverses. (2). Find the inverse of h(x) = 8 – 3x. (3). Solve: 27 x – 1 < 9 2x + 3 (4).
Geometric Sequences and Series
12.2 – Analyze Arithmetic Sequences and Series. Arithmetic Sequence: The difference of consecutive terms is constant Common Difference: d, the difference.
Sequences and Series It’s all in Section 9.4a!!!.
Section 7.2 Arithmetic Sequences Arithmetic Sequence Finding the nth term of an Arithmetic Sequence.
Copyright 2013, 2010, 2007, Pearson, Education, Inc. Section 5.7 Arithmetic and Geometric Sequences.
Warm Up Section 3.6B (1). Show that f(x) = 3x + 5 and g(x) =
12.2: Analyze Arithmetic Sequences and Series HW: p (4, 10, 12, 14, 24, 26, 30, 34)
Explicit & Recursive Formulas.  A Sequence is a list of things (usually numbers) that are in order.  2 Types of formulas:  Explicit & Recursive Formulas.
What are two types of Sequences?
+ Geometric Sequences & Series EQ: How do we analyze geometric sequences & series? M2S Unit 5a: Day 9.
Ch. 11 – Sequences & Series 11.1 – Sequences as Functions.
8.6 Geometric Sequences.
Geometric Sequences as Exponential Functions
Sequences & Series. Sequences  A sequence is a function whose domain is the set of all positive integers.  The first term of a sequences is denoted.
Review for the Test Find both an explicit formula and a recursive formula for the nth term of the arithmetic sequence 3, 9, 15,……… Explicit Formula ______________________________.
Homework Questions. Geometric Sequences In a geometric sequence, the ratio between consecutive terms is constant. This ratio is called the common ratio.
Homework Questions. Number Patterns Find the next two terms, state a rule to describe the pattern. 1. 1, 3, 5, 7, 9… 2. 16, 32, 64… 3. 50, 45, 40, 35…
Arithmetic and Geometric Sequences Finding the nth Term 2,4,6,8,10,…
Arithmetic Sequences In an arithmetic sequence, the difference between consecutive terms is constant. The difference is called the common difference. To.
Algebra II Chapter : Use Recursive Rules with Sequences and Functions HW: p (4, 10, 14, 18, 20, 34)
12.2, 12.3: Analyze Arithmetic and Geometric Sequences HW: p (4, 10, 12, 18, 24, 36, 50) p (12, 16, 24, 28, 36, 42, 60)
Lesson 7-7 Geometric Sequences.  Remember, an arithmetic sequence changes by adding (or subtracting) a constant to each term.  Ex: -4, 1, 6, 11, 16,
4.2B Geometric Explicit and Recursive Sequences
Algebra 1 Functions 5 Evaluate and write geometric sequences Recall: arithmetic sequence t n = t 1 + (n-1)d A sequence is geometric if the ratio “r” of.
Arithmetic and Geometric Sequences. Determine whether each sequence is arithmetic, geometric, or neither. Explain your reasoning. 1. 7, 13, 19, 25, …2.
12.3 – Analyze Geometric Sequences and Series. Geometric Sequence: Ratio of any term to the previous term is constant Common Ratio: Ratio each term is.
ADD To get next term Have a common difference Arithmetic Sequences Geometric Sequences MULTIPLY to get next term Have a common ratio.
May 1, 2012 Arithmetic and Geometric Sequences Warm-up: What is the difference between an arithmetic and geometric sequence? Write an example for each.
+ 8.4 – Geometric Sequences. + Geometric Sequences A sequence is a sequence in which each term after the first is found by the previous term by a constant.
Geometric Sequences. Warm Up What do all of the following sequences have in common? 1. 2, 4, 8, 16, …… 2. 1, -3, 9, -27, … , 6, 3, 1.5, …..
Geometric Sequence: each term is found by multiplying the previous term by a constant.
Mathematical Patterns & Sequences. Suppose you drop a handball from a height of 10 feet. After the ball hits the floor, it rebounds to 85% of its previous.
Se quences Recursive Definition Ch. 13 (2). Warm Up Find the first 4 terms of the sequence. State whether it is arithmetic, geometric or neither
Given an arithmetic sequence with
13.1 – Finite Sequences and Series
Chapter 13: Sequences and Series
Sequences Arithmetic Sequence:
4-7 Arithmetic Sequences
Geometric Sequences and Series
Aim: What is the arithmetic and geometric sequence?
AKS 67 Analyze Arithmetic & Geometric Sequences
Patterns & Sequences Algebra I, 9/13/17.
7-8 Notes for Algebra 1 Recursive Formulas.
11.3 – Geometric Sequences.
Geometric sequences.
Section 5.7 Arithmetic and Geometric Sequences
4-7 Sequences and Functions
Arithmetic Sequences:
Arithmetic Sequences In an arithmetic sequence, the difference between consecutive terms is constant. The difference is called the common difference. To.
12.2: Arithmetic Sequences
Geometric sequences.
Homework Questions.
Geometric Sequences A geometric sequence is a list of numbers with a common ratio symbolized as r. This means that you can multiply by the same amount.
Warm-Up Write the first five terms of an = 4n + 2 a1 = 4(1) + 2
Unit 3: Linear and Exponential Functions
Warmup Solve cos 2
4-7 Arithmetic Sequences
Arithmetic & Geometric Sequences
Geometric Sequences and Series
Presentation transcript:

Geometric Sequences Section 3.2.1

Vocabulary Geometric Sequence: A sequence in which the ratio of any term to the previous term is constant. Common Ratio: The constant ratio between consecutive terms of a geometric sequence, denoted by r.

Investigation 1: Recall: An arithmetic sequence is a sequence in which the difference between two consecutive terms is constant. The constant difference between terms of an arithmetic sequence is denoted d and the explicit formula to find the nth term of a sequence is: an = a1 + d(n – 1).

Identify the next three terms of the arithmetic sequence, then write the explicit formula for the sequence: 3, 7, 11, 15, an = 3 + 4(n – 1) or an = 4n – 1 19, 23, 27, . . . Use the formula from example #1 to find the 27th term of the sequence. a27 = 3 + 4(27 – 1) = 107

In an arithmetic sequence, the terms are found by adding a constant amount to the preceding term. In a geometric sequence, the terms are found by multiplying each term after the first by a constant amount. This constant multiplier is called the common ratio and is denoted r. For each geometric sequence, identify the common ratio, r. 3. 2, 6, 18, 54, 162, . . . 4. 5, 50, 500, 5000, . . . 5. 3, , , , . . . -4, 24, -144, 864, -5184, . . . r = 3 r = 10 r = ½ r = -6

Tell whether the sequences is arithmetic, geometric or neither Tell whether the sequences is arithmetic, geometric or neither. For arithmetic sequences, give the common difference. For geometric sequences, give the common ratio.   7. 5, 10, 15, 20, 25, …. 8. 1, 1, 2, 3, 5, 8, 13, 21, … 9. 1, -4, 16, -64, 256, … 10. 512, 256, 128, 64, 32, … arithmetic; d = 5 neither geometric; r = -4 geometric; r = ½

Check for Understanding:   11. Find the first four terms of a geometric sequence in which a1 = 5 and r = -3. _____ , _____ , _____ , _____. 12. Find the missing term in the geometric sequence: -7, _______ , -28, 56, _______ , . . . 5 -15 45 -135 × -3 × -3 × -3 14 -112 × -2 × -2 56 ÷ -28 = -2 So, r = -2

Investigation 2: The explicit formula used to find the nth term of a geometric sequence with the first term a1 and the common ratio r is given by: an = a1∙ rn-1 Write a rule for the nth term of the sequence given. Then find a10.  

13. 1, 6, 36, 216, 1296, … Rule: an = 1∙6n-1 a10 = 1∙610-1 = 10077696    14. 14, 28, 56, 112, … Rule: an = 14∙2n-1 a10 = 14∙210-1 = 7168

Check for Understanding:   15. If a5 = 324 and r = -3, write the explicit formula for the geometric sequence and find a10. _____ , _____ , _____ , _____, 324 Rule: an = 4∙(-3)n-1 a10 = 4∙(-3)10-1 = -78732 4 -12 36 -108 OR ÷ -3 ÷ -3 ÷ -3 ÷ -3

16. If a3 = 18 and r = 3 write the explicit formula for the geometric sequence and find a10. Rule: an = 2∙(3)n-1 a10 = 2∙(3)10-1 = 39366

20. If r = 2 and a1 = 1 for a geometric sequence, Write a rule for the nth term of the sequence. b. Graph the first five terms of the sequence. (1, 1), (2, 2), (3, 4), (4, 8), (5, 16) What kind of graph does this represent? exponential