Detectors for Tomorrow and After Tomorrow… Amos Breskin Radiation Detection Physics Group Weizmann Institute 1 Amos Breskin.

Slides:



Advertisements
Similar presentations
1 Aaron Manalaysay Physik-Institut der Universität Zürich CHIPP 2008 Workshop on Detector R&D June 12, 2008 R&D of Liquid Xenon TPCs for Dark Matter Searches.
Advertisements

First observation of electroluminescence in liquid xenon within THGEM holes: towards novel Liquid Hole-Multipliers L. Arazi, A. Breskin, A. Coimbra*,
I.Kreslo CHIPP workshop on Detector R&D, University of Geneva, June Development of Liquid Nitrogen Time Projection Chambers A. Ereditato,
Progress on a Gaseous Xe detector for Double Beta Decay (EXO) David Sinclair Xenon Detector Workshop Berkeley, 2009.
R&D on Astroparticles Detectors (Activity on CSN )
Dark Matter Searches with Dual-Phase Noble Liquid Detectors Imperial HEP 1st Year Talks ‒ Evidence and Motivation ‒ Dual-phase Noble Liquid Detectors ‒
New Readout Methods for LAr detectors P. Otyugova ETH Zurich, Telichenphysik CHIPP Workshop on Neutrino physics.
The XENON Project A 1 tonne Liquid Xenon experiment for a sensitive Dark Matter Search Elena Aprile Columbia University.
Proportional Light in a Dual Phase Xenon Chamber
Upgrade of liquid xenon gamma-ray detector in MEG experiment Daisuke Kaneko, the University of Tokyo, on behalf of the MEG collaboration MEG EXPERIMENT.
1 Scintillators  One of the most widely used particle detection techniques Ionization -> Excitation -> Photons -> Electronic conversion -> Amplification.
Sept. 24, Status of GEM DHCAL Jae Yu For GEM-TGEM/DHCAL Group Sept. 24, 2010 CALICE Collaboration Meeting Univ. Hassan II, Casablanca Introduction.
C.Shalem et al, IEEE 2004, Rome, October 18 R. Chechik et al. ________________RICH2004_____________ Playa del Carmen, Mexico 1 Thick GEM-like multipliers:
ZEPLIN II Status & ZEPLIN IV Muzaffer Atac David Cline Youngho Seo Franco Sergiampietri Hanguo Wang ULCA ZonEd Proportional scintillation in LIquid Noble.
A. Breskin RD51 Amsterdam 4/08 ION BLOCKING & visible-sensitive gas-PMs Efficient ion blocking in gaseous detectors and its application to visible-sensitive.
A. Lyashenko INSTR08 – BINP – Feb ION BLOCKING & visible-sensitive gas-PMs Efficient ion blocking in gaseous detectors and its application to visible-sensitive.
Gaseous photomultipliers and liquid hole-multipliers for future noble-liquid detectors L. Arazi [1], A. E. C. Coimbra [1,2], E. Erdal [1], I. Israelashvili.
1 The GEM Readout Alternative for XENON Uwe Oberlack Rice University PMT Readout conversion to UV light and proportional multiplication conversion to charge.
GEM Digital Hadron Calorimetry
Fabio Sauli-CERN 1 IEEE-NSS Rome 04 F. Sauli, T. Meinschad, L. Musa, L. Ropelewski CERN, GENEVA, SWITZERLAND PHOTON DETECTION AND LOCALIZATION WITH THE.
Photodetection EDIT EDIT 2011 N. Dinu, T. Gys, C. Joram, S. Korpar, Y. Musienko, V. Puill, D. Renker 1 Micro Channel plate PMT (MCP-PMT) Similar to ordinary.
THGEM “news” Mostly Ne-mixtures… Weizmann M. Cortesi, J. Miyamoto, R. Chechik, A. Layshenko CERN V. Peskov Coimbra & Aveiro J. Veloso, C. Azevedo, J. Escada,
QUPID Readout and Application in Future Noble Liquid Detectors Kevin Lung, UCLA TIPP 2011 June 11, 2011.
GEM: A new concept for electron amplification in gas detectors Contents 1.Introduction 2.Two-step amplification: MWPC combined with GEM 3.Measurement of.
J.T. White Texas A&M University SIGN (Scintillation and Ionization in Gaseous Neon) A High-Pressure, Room- Temperature, Gaseous-Neon-Based Underground.
DEVELOPMENT OF A THGEM-BASED PHOTON DETECTOR FOR CHERENKOV IMAGING APPLICATIONS Silvia Dalla Torre INFN - Trieste On behalf of an Alessandria-CERN-Freiburg-Liberec-Prague-Torino-TriesteCollaboration.
F August S. Pordes - Fermilab1 Liquid Argon for Direct Detection of Dark Matter Work and Plans at Fermilab.
PID for super Belle (design consideration) K. Inami (Nagoya-u) - Barrel (TOP counter) - Possible configuration - Geometry - Endcap (Aerogel RICH) - Photo.
Diego Gonzalez Diaz (Univ. Zaragoza and CERN)
R & D at BHU B.K. Singh (On behalf of HEP Group).
THGEM in Ne-mixtures UV-photon detection in RICH & more Weizmann: M. Cortesi, R. Chechik, R. Budnik, CERN: V. Peskov Coimbra & Aveiro: J. Veloso, C. Azevedo,
Rachel Chechik Weizmann Institute TIIPP09 Tsukuba March 2009 The THGEM: a THick robust Gaseous Electron Multiplier for radiation detectors A.Breskin, M.
6-Aug-02Itzhak Tserruya PHENIX Upgrade mini-Workshop1 Boris Khachaturov, Alexander Kozlov, Ilia Ravinovich and Itzhak Tserruya Weizmann Institute, Israel.
TPC/HBD R&D at BNL Craig Woody BNL Mini Workshop on PHENIX Upgrade Plans August 6, 2002.
Digital Calorimetry using GEM technology Andy White for UTA group (A. Brandt, K. De, S. Habib, V. Kaushik, J. Li, M. Sosebee, Jae Yu) U.C. Santa Cruz 6/28/2002.
FSC Status and Plans Pavel Semenov IHEP, Protvino on behalf of the IHEP PANDA group PANDA Russia workshop, ITEP 27 April 2010.
Future Possibilities for Measuring Low Mass Lepton Pairs in Christine Aidala for the Collaboration Quark Matter 2002, Nantes.
UTA Digital hadron Calorimetry using the GEM concept J.Li, A.White, J.Yu 5/30/02.
1 Two-phase Ar avalanche detectors based on GEMs A. Bondar, A. Buzulutskov, A. Grebenuk, D. Pavlyuchenko, Y. Tikhonov Budker Institute of Nuclear Physics,
I. Giomataris, CEA-Irfu-France
T. Zerguerras- RD51 WG Meeting- CERN - February Single-electron response and energy resolution of a Micromegas detector T. Zerguerras *, B.
1 A two-phase Ar avalanche detector with CsI photocathode: first results A. Bondar, A. Buzulutskov, A. Grebenuk, D. Pavlyuchenko, R. Snopkov, Y. Tikhonov.
Update on THGEM project for RICH application Elena Rocco University of Eastern Piedmont & INFN Torino On behalf of an Alessandria-CERN-Freiburg-Liberec-
Recent THGEM investigations A. Breskin, V. Peskov, J. Miyamoto, M. Cortesi, S. Cohen, R. Chechik Weizmann Institute RD51 Paris Oct 08 - Gain: UV vs. X-rays.
Development of a Single Ion Detector for Radiation Track Structure Studies F. Vasi, M. Casiraghi, R. Schulte, V. Bashkirov.
THGEMs: very recent results towards applications in DHCAL & LXe detector readout Weizmann: A. Breskin, R. Chechik, R. Budnik, CERN: V. Peskov Coimbra &
P HOTON Y IELD DUE TO S CINTILLATION IN CF4 Bob Azmoun, Craig Woody ( BNL ) Nikolai Smirnov ( Yale University )
Upgrade of the MEG liquid xenon calorimeter with VUV-light sensitive large area SiPMs Kei Ieki for the MEG-II collaboration 1 II.
THGEM Marco Cortesi Weizmann Institute of Science PANIC08 Recent Advances in THGEM Detectors M. Cortesi, A. Breskin, R. Chechik, R. Alon, J. Miyamoto Weizmann.
Cryogenic Thick-GEM (THGEM) detectors and their applications Cryogenic Thick-GEM (THGEM) detectors and their applications Affordable instrumentation for.
Development of UV-sensitive MPPC for upgrade of liquid xenon detector in MEG experiment Daisuke Kaneko, on behalf of the MEG Collaboration µ γ Liquid xenon.
Thorsten Lux. Charged particles X-ray (UV) Photons Cathode Anode Amplification Provides: xy position Energy (z position) e- CsI coating 2 Gas (Mixture)
Andrey Sokolov Novosibirsk State University (NSU) Budker Institute of Nuclear Physics (Budker INP) Novosibirsk, Russia Two-phase Cryogenic Avalanche Detector.
PROJECT X PHYSICS STUDY WORKSHOP (PXPS 2012) Working Group on Time of Flight Conveners: Mike Albrow (FNAL) & Bob Wagner (ANL) New directions in fast timing:
Study of the cryogenic THGEM-GPM for the readout of scintillation light from liquid argon Xie Wenqing( 谢文庆 ), Fu Yidong( 付逸冬 ), Li Yulan( 李玉兰 ) Department.
Presented by Samuel DUVAL On behalf of the Xénon group Industry-Academia Matching Event on Micro-Pattern Gaseous Detectors April 2012, Annecy-le-Vieux.
Large THGEM sampling elements for DHCAL status report
Thick-GEM sampling element for DHCAL: First beam tests & more
Amos Breskin Weizmann Institute of Science
MPGD 2015 Concise Summary Amos Breskin.
standard THGEM versus FLOWER
MPGD 2013 Conference,Zaragoza July 1-4, 2012
THGEM: Introduction to discussion on UV-detector parameters for RICH
Digital Calorimetry using GEM technology Andy White for UTA group
3g Medical Imaging R&D with liquid xenon Compton telescope
PHOTON DETECTION AND LOCALIZATION WITH THE
GEM-based Digital Hadron Calorimetry for SiD
E. Erdal(1), L. Arazi(2), A. Breskin(1), S. Shchemelinin(1), A
Presentation transcript:

Detectors for Tomorrow and After Tomorrow… Amos Breskin Radiation Detection Physics Group Weizmann Institute 1 Amos Breskin

Scientific activities Research topics:  Basic detection-related phenomena:  New detector concepts  Detector applications: HEP (LHC, ILC, RHIC); “Astro” (DM, SN); Homeland security… Prostate Tumor Zn X-ray beam X-ray detector Zn characteristic X- ray Rectal wall WIMP Gas Liquid e E photomultiplier Xe Prostate cancer DNA damage MAIN INTEREST: GAS-AVALANCHE DETECTORS e - multipliers Gas photomultipliers Optical-TPC Noble-liquid detectors n-imaging Ionization patterns 2 Amos Breskin

CERN-RD51 3

Thick Gas Electron Multiplier (THGEM) SIMPLE, ROBUST, LARGE-AREA Printed-circuit technology* 1 e - in e - s out E THGEM Double-THGEM: higher gains ~ 10-fold expanded GEM A.B. et al. Weizmann Effective single-electron detection Few-ns time resolution Sub-mm position resolution >MHz/mm 2 rate capability Cryogenic operation: OK Broad pressure range: 1mbar - few bar Thickness 0.5-1mm GOAL: simple detector with moderate (sub-mm) resolution 4 Amos Breskin * production: CERN PCB workshop Print Electronics, Israel

Double-THGEM photon-imaging detector  RICH UV photon e-e- Segmented readout electrode CsI photocathode THGEM Currently R&D for upgrade of CERN-COMPASS RICH Important FACTS for RICH: - Single-photon sensitivity - Simple, robust, compact, large area - Fast, good localization - Photon detection efficiency : ~ 170 nm -Lower discharge probability than MWPC/CsI UV detector & faster recovery S. Dalla Torre, INFN Trieste 5 Amos Breskin

Digital Hadron Calorimetry for ILC (If) ILC: Precision studies of new physics Hadron calorimetry requires 2-fold improved JET-energy resolution: present 60%/  E  30%/  E Digital SiD: Requires: thin, efficient, highly-segmented, compact, robust sampling elements. candidates: RPC, D-GEM, Micromegas, THGEM ~7mm Fe Sampling jets + advanced pattern recognition algorithms  Very high-precision jet energy measurement. CALICE simulations: σ/E jet ~3-4% With Andy White (UTA) + Coimbra & Aveiro 6 Amos Breskin

Few-mm thin, THGEM-based sampling elements - High efficiency (>96%/98%) with minimal multiplicity (~1.1/1.2) for muons - Discharges: rare; do not affect electronics - Micro-discharges: do not affect performance - Total thickness (excluding electronics) : 5-6 mm. Underway: optimization studies & R&D on large-area detectors. Ne/5%CH 4 A competitive robust technique 7 Amos Breskin

cryogenic gas-photomultipliers (GPM) for noble-liquid scintillators for noble-liquid scintillators - Generic R&D - Compton camera for medical imaging - UV detectors for DM search (XENON, DARWIN) - Combined fast-neutron & Gamma radiography 8 Amos Breskin

XENON100Kg: running with PMTs! PROBLEM: exorbitant cost of future multi-ton detectors! WIMP interaction LXe e- GPM Detector Primary scintillation EGEG ELEL Secondary scintillation Xe-gas GPM Detector UV-window Ne/CF4 RD51: Weizmann/Nantes/Coimbra Vacuum Photodetectors PMTs or QUPID GPM: Dark Matter search ? Two-phase XENON1t Dark Matter Detector concept E. Aprile/XENON (incl. Weizmann) 1m S1 S2 S2/S1  background rejection LXe 9 Amos Breskin

Combined gamma & fast-neutron imaging detector. Gammas and neutrons interact with liquid-xenon; the resulting UV photons are detected with a double-THGEM, CsI-coated gaseous photomultiplier. Great Challenge: Combined  /n imaging detectors possibly thin capillaries filled with liquid xenon (LXe) 10m TOF: Gammas: ~30ns Fast-n: ~ ns  “Moderate” electronics LXe SCINTILLATOR: - High density (3 g/cm 3 ) - Fast (2ns) - Good spectral match w CsI-photocathode: 175nm - 3cm LXe: high efficiencies: - n: 15-25% -  30-40% 11B(d,n)12C Detection of explosives & nuclear materials 10Amos Breskin

Cryo-GPM with LXe Duval 2011 JINST 6 P4007 GPM: THGEM/PIM/Micromegas GPM 200 ns Gain K FIRST Scintillation induced signals in LXe by 5.5MeV alphas GPM vs 173K INTENSE R&D in a novel LXe Weizmann 11 Amos Breskin

Weizmann Institute Liquid Xenon Facility (WILiX) TPC-GPM testing ground Inner chamber (LXe) Vacuum insulation Gate valve GPM load-lock GPM guide, gas, cables Xe heat exchanger Xe liquefier TPC Basic consideration: allow frequent modifications in GPM without breaking the LXe equilibrium state GPM L Arazi, M Rappaport 12 Amos Breskin

Towards single-phase TPCs Simpler techniques? Sufficient signals? Lower thresholds? Cheaper? How to record best scintillation & ionization S1, S2? 13 Amos Breskin

Cascaded Liquid Hole-Multipliers LHM Modest charge multiplication + Light- amplification in sensors immersed in the noble liquid, applied to the detection of both scintillation UV- photons (S1) and ionization electrons (S2). -UV-photons impinge on CsI-coated THGEM electrode; -extracted photoelectrons are trapped into the holes, where high fields induce electroluminescence (+possibly small charge gain); -resulting photons are further amplified by a cascade of CsI- coated THGEMs. -Similarly, drifting S2 electrons are focused into the hole and follow the same amplification path. -S1 and S2 signals are recorded optically by an immersed GPM or by charge collected on pads. Holes: -Small- or no charge-gain -Electroluminescence (optical gain) 14 Amos Breskin

S1 & S2 with LHM Detects S1&S2 A dual-sided single-phase TPC DM detector with top, bottom and side THGEM-LHMs. The prompt S1 scintillation signals are detected with all LHMs. The S2 signals are recorded with bottom and top LHMs. Highlights: Higher S1 signals  lower expected detection threshold Shorter drift lengths  lower HV applied & lower e- losses 15 Amos Breskin Liquid xenon

CSCADED LHMs L E LHM S1, S2 S1 LOW HV for large-volume Relaxed electron lifetime Need: low radioactivity and pad-readout C C C C 16 Amos Breskin Liquid xenon

SUMMARY Advances in Detector Physics Main trend: THGEM R&D, production and applications RT: RICH & DHCAL CRYO: UV photons & charge detection in noble liquids for: DM, Medical, Inspection 17 Amos Breskin