Christopher | Vlad | David | Nino SUPERMASSIVE BLACK HOLES.

Slides:



Advertisements
Similar presentations
Chapter 15: The Milky Way Galaxy
Advertisements

The W i d e s p r e a d Influence of Supermassive Black Holes Christopher Onken Herzberg Institute of Astrophysics Christopher Onken Herzberg Institute.
ASTR-1020 Stellar Astronomy Day 26. Galaxy Classes.
Lecture 21 updates. Hubble’s STIS Spectrograph Please include this image at the start of the images of STIS.
Caty Pilachowski IU Astronomy Mini-University 2014.
February 9, 11:00 am. The unusually bright centers found in some galaxies are called 1.active galactic nuclei. 2.starbursts. 3.halos. 4.supermassive.
Some examples of Type I supernova light curves Narrow range of absolute magnitude at maximum light indicates a good Standard Candle B band absolute magnitude.
Slide 1 Andromeda galaxy M31Milky Way galaxy similar to M31.
Chapter 20 Dark Matter, Dark Energy, and the Fate of the Universe.
Supermassive Black Holes Course 689 Presentation by Yan Shi Nov 5, 2009.
“Do I have your attention…?”
AST101 The Evolution of Galaxies. Virgo Cluster Collisions of Galaxies Outside of Clusters (the field), most galaxies are spiral or irregular In dense.
Active Galactic Nuclei Astronomy 315 Professor Lee Carkner Lecture 19.
QUASARS Monsters of the ancient Universe Professor Jill Bechtold Steward Observatory Tucson Amateur Astronomers, Dec. 6, 2002.
Galaxies with Active Nuclei Chapter 17. You can imagine galaxies rotating slowly and quietly making new stars as the eons pass, but the nuclei of some.
Class 24 : Supermassive black holes Recap: What is a black hole? Case studies: M87. M106. MCG What’s at the center of the Milky Way? The demographics.
Black Holes Old ideas for black holes Theory of black holes Real-life black holes Stellar mass Supermassive Speculative stuff (if time)
ASTR100 (Spring 2008) Introduction to Astronomy Galaxy Evolution & AGN Prof. D.C. Richardson Sections
Active Galactic Nuclei (or AGN) Seyfert galaxies have very small (unresolved), extremely powerful centers! The strength of the emission lines vary on timescales.
Lecture 18 Black Holes (cont) ASTR 340 Fall 2006 Dennis Papadopoulos.
The Milky Way Center, Shape Globular cluster system
The Milky Way Galaxy Immanuel Kant (1724 – 1804) German philosopher The infinitude of creation is great enough to make a world, or a Milky Way of worlds,
Levels of organization: Stellar Systems Stellar Clusters Galaxies Galaxy Clusters Galaxy Superclusters The Universe Everyone should know where they live:
The Milky Way and Other Galaxies Science A-36 12/4/2007.
Quasars and Other Active Galaxies
Black holes: do they exist?
Super Massive Black Holes A Talk Given By: Mike Ewers.
 Galaxies with extremely violent energy release in their nuclei  Active Galactic Nuclei (AGN)  Up to many thousand times more luminous than the entire.
The Big Stuff Galaxies The Universe and The Big Bang.
This is the Local Group of galaxies, about 45 galaxies within about 1 Mpc of the Milky Way. Most are dwarf-elliptical or iregular. A distance of one million.
Our goals for learning How did Hubble prove galaxies lie beyond our galaxy? How do we observe the life histories of galaxies? How did galaxies form? Why.
The Milky Way Appears as a band of light stretching across the sky There are dark regions along the band, giving the appearance of a lack of stars This.
Quasars, black holes and galaxy evolution Clive Tadhunter University of Sheffield 3C273.
A black hole is a region of space with such a strong gravitational field that not even light can escape.
Black Holes Escape velocity Event horizon Black hole parameters Falling into a black hole.
Black Holes Regions of space from which nothing, not even light, can escape because gravity is so strong. First postulated in 1783 by John Michell Term.
Remnant of a Type II supernova explosion Iron core collapses until neutrons are squeezed tightly together During the explosion core remains intact, outer.
Lecture 40 Galaxies (continued). Evolution of the Universe. Characteristics of different galaxies Redshifts Unusual Galaxies Chapter 18.6  18.9.
Black Hole Chaos The Environments of the most super- massive black holes in the Universe Belinda Wilkes, Chandra X-ray Center, CfA Francesca Civano, CfA.
January 2nd 2013 Objective Warm-Up
Active Galaxies A Short Survey. All Galaxies are active to some extent: For "normal" galaxies, we can think of the total energy output as the sum of stellar.
Galaxies with Active Nuclei Chapter 14:. Active Galaxies Galaxies with extremely violent energy release in their nuclei (pl. of nucleus).  “active galactic.
Earth & Space Science March 2015
Quasars and Active Galactic Nuclei
Active Galactic Nuclei Chapter 25 Revised Active Galactic Nuclei Come in several varieties; Starburst Nuclei – Nearby normal galaxies with unusually.
Active Galaxies and Supermassive Black Holes Chapter 17.
Astrophysics from Space Lecture 6: Supermassive black holes Prof. Dr. M. Baes (UGent) Prof. Dr. C. Waelkens (KUL) Academic year
Quasars and Other Active Galaxies
Active Galactic Nuclei Chapter 26 Revised Active Galactic Nuclei Come in several varieties; Starburst Nuclei – Nearby normal galaxies with unusually.
Copyright © 2010 Pearson Education, Inc. Clicker Questions Chapter 14 The Milky Way Galaxy.
Our Milky Way Galaxy. The Milky Way Almost everything we see in the night sky belongs to the Milky Way. We see most of the Milky Way as a faint band of.
A Long Time Ago in a Galaxy Far, Far Away…. The Milky Way Galaxy: Home Sweet Home!! Our home Galaxy is called the MILKY WAY (like the candy bar ) Our.
Milky Way: Galactic Structure and Dynamics Milky Way has spiral structure Galactic Bulge surrounds the Center Powerful radio source Sagittarius A at Center.
A black hole: The ultimate space-time warp Ch. 5.4 A black hole is an accumulation of mass so dense that nothing can escape its gravitational force, not.
Active Galaxies Galaxies with extremely violent energy release in their nuclei (pl. of nucleus). → “Active Galactic Nuclei” (= AGN) Up to many thousand.
Milky Way Galaxy. Galaxy A group of stars, dust and gases held together by gravity. 170 billion galaxies in the universe 200 billion stars in a galaxy.
Chapter 20 Cosmology. Hubble Ultra Deep Field Galaxies and Cosmology A galaxy’s age, its distance, and the age of the universe are all closely related.
GALAXIES & BEYOND. What is a galaxy? A galaxy is a very large group of stars held together by gravity. Size: 100,000 ly+ Contain Billions of stars separated.
Chapter 14: Chapter 14: Black Holes: Matters of Gravity.
Lecture 16 Measurement of masses of SMBHs: Sphere of influence of a SMBH Gas and stellar dynamics, maser disks Stellar proper motions Mass vs velocity.
Stellar Evolution Continued…. White Dwarfs Most of the fuel for fusion is used up Giant collapses because core can’t support weight of outer layers any.
 Sun-like star  WHITE DWARF  Huge Star  NEUTRON STAR  Massive Star  BLACK HOLE.
Galaxies with Active Nuclei
How fast would a galaxy 2,000 megaparsecs away be moving with respect to us, according to Hubble’s Law? Hint: H0 = 70 km/s/Mpc 1,400 km/s 14,000 km/s 140,000.
© 2017 Pearson Education, Inc.
HUBBLE DEEP FIELD:.
Quasars, Active Galaxies, and super-massive black holes
Galaxies With Active Nuclei
Galaxies With Active Nuclei
Presentation transcript:

Christopher | Vlad | David | Nino SUPERMASSIVE BLACK HOLES

WHAT IS A BLACK HOLE? Massive object from which nothing can escape. Even light is attracted by gravity. Schwarzschild radius is the distance for a given mass where the escape velocity is the speed of light A black hole has its entire mass enclosed in its own Schwarzschild radius.

HOW CAN WE SEE BLACK HOLES? No light escapes Hawking Radiation Not observed Accretion disks Observed radiation An artist's rendering of the Cygnus X-1 system. (from

HOW DO BLACK HOLES FORM? Type II Supernova of a massive star Collapse of a neutron star Nothing can stop it Don’t know what happens after

HOW DO WE WEIGH BLACK HOLES? Mass can be inferred from orbital velocities of stars around it The position of a star around the Supermassive Black Hole Sgr A* (from

PROPERTIES OF SUPERMASSIVE BLACK HOLES Masses range from millions to billions of solar masses Located at center of most galaxies Especially flat, normal galaxies with bulge component Active SMBHs emit energetic jets X-Rays and Gamma rays Perpendicular to accretion disks (possibly) along rotation axis Limit star growth by clearing gas along their axis

PROPERTIES OF SUPERMASSIVE BLACK HOLES Strong X-Ray emitters Account for half of radiation after Big Bang SMBH rotation drags spacetime in direction of rotation (Roy Kerr) – “frame dragging” Local phenomenon Can delay matter falling in due to sideways motion Weaker tidal forces than BH of regular size/mass Since larger surface area of event horizon

EATING OR FASTING? DIFFERENT FACES OF SMBHS SMBHs may regulate galactic growth along with appetite for matter Saggitarius A* - dormant SMBH in Milky Way nearly empty Very little matter in immediate surroundings Large amounts of matter in surroundings Quasar galaxies, Seyfert galaxies, Blazar galaxies Quasar galaxy Most variably-luminous objects in universe (> L solar ) Powerful jets powered by accretion disk around SMBH Central SMBH 10,000x times regular black hole 3C 273 – first quasar discovered early 1960s Quasar activity peaked in early universe

EATING OR FASTING? DIFFERENT FACES OF SMBH Seyfert galaxy Produce spectral emissions from highly ionized gas Large amounts of IR, UV, X-Ray rad. Jet velocity 500-4,000 km/s Central SMBH mass 10 8 M solar Blazar galaxy Emission jets pointed towards Earth Radiation spectrum radio to Gamma rays Variable / Unstable output At 9 billion ly can be detected with Earthly instruments SMBHs key for early universe Facilitate formation of galaxies

WHY DO WE THINK THEY ARE BLACK HOLES? Sphere of influence r h ~ GM BH /  2 ~ 11.2(M BH /10 8 M S )/(  /200kms -1 ) 2 pc Keplerian velocity distribution near galactic center Must be highly concentrated mass at center Proper motion of stars in Milky way indicate singularity at galactic center Called Sagittarius A* Higher concentration than normal of 22Ghz water masers imply an AGN in NGC 4258

OTHER METHODS Hubble Space Telescope high resolution images Shows clearly gas or stellar dynamics at galactic nucleus Only works if gravity is most influential force on gas Reverberation or Echo mapping Only for type 1 active galactic nuclei Can probe regions up to 1000 times the Schwarzschild Radius

HOW DOES THE SMBH RELATE TO THE SURROUNDING GALAXY? M BH vs. blue luminosity of the bulge (whole galaxy if elliptical) Correlates to blue luminosity from the bulge Generally scattered correlation; less so for ellipticals Latest relation given by log(M BH ) = (8.37±0.11) – (0.419±0.085)(B 0 T ) M BH vs. velocity dispersion, (σ) σ relates to L B, which relates to M BH Tighter correlation than mass vs. bulge light; maybe more fundamental Latest relation (M BH /10 8 M Sun ) = (1.66±0.24)(σ/200km s -1 ) 4.68±0.43

OTHER CORRELATIONS WITH HOST GALAXY M BH vs. bulge light concentration (C) Tight correlation; little scattering Practical relation; needs only one measurement Depends on parametric characterization of light profile M BH vs. Dark Matter Halo σ correlates tightly with large scale circular velocity distribution Less massive halos are less efficient at forming SMBH (M BH /10 8 M Sun ) ~ 0.10(M DM /10 12 M Sun ) 1.65

HOW DO SUPERMASSIVE BLACK HOLES FORM? What came first? Supermassive Black Holes or galaxies ? Proponents of galalxies first: Observed galaxies without SMBH (ex. NGC 2613) Bulge component in flattened normal galaxies necessary

Proponents of SMBH first: Uniform density shown by microwave background radiation Not sufficiently clumped to form SMBH from regular matter alone Suggest SMBH from dark matter Quasar activity peaked 10 billion years ago Primordial seed theory Central black hole can double its mass every 40 million years

GROWTH OF SUPERMASSIVE BLACK HOLES Stellar and intermediate mass black holes gravitate towards galactic center Coalesce there to SMBH (ex. NGC 253) Major growth from galactic collisions and mergers Example collision of Milky Way with Andromeda in 5 billion years New Black Hole: 100 million M solar Both from SMBH mergers and influx of material

WILL SUPERMASSIVE BLACK HOLES DIE? Will stop growing Estimated terminal mass 1-10 billion M solar Hawking radiation 30 M solar black hole times current age of universe 100 billion M solar black hole years