Review: Intro to recognition Recognition tasks Machine learning approach: training, testing, generalization Example classifiers Nearest neighbor Linear.

Slides:



Advertisements
Similar presentations
Kapitel 14 Recognition – p. 1 Recognition Scene understanding / visual object categorization Pose clustering Object recognition by local features Image.
Advertisements

Kapitel 14 Recognition Scene understanding / visual object categorization Pose clustering Object recognition by local features Image categorization Bag-of-features.
Image classification Given the bag-of-features representations of images from different classes, how do we learn a model for distinguishing them?
Clustering with k-means and mixture of Gaussian densities Jakob Verbeek December 3, 2010 Course website:
Part 1: Bag-of-words models by Li Fei-Fei (Princeton)
Marco Cristani Teorie e Tecniche del Riconoscimento1 Teoria e Tecniche del Riconoscimento Estrazione delle feature: Bag of words Facoltà di Scienze MM.
TP14 - Indexing local features
Multi-layer Orthogonal Codebook for Image Classification Presented by Xia Li.
LARGE-SCALE IMAGE PARSING Joseph Tighe and Svetlana Lazebnik University of North Carolina at Chapel Hill road building car sky.
1 Part 1: Classical Image Classification Methods Kai Yu Dept. of Media Analytics NEC Laboratories America Andrew Ng Computer Science Dept. Stanford University.
Instructor: Mircea Nicolescu Lecture 17
CS4670 / 5670: Computer Vision Bag-of-words models Noah Snavely Object
Bag-of-features models. Origin 1: Texture recognition Texture is characterized by the repetition of basic elements or textons For stochastic textures,
Words & Pictures Clustering and Bag of Words Representations Many slides adapted from Svetlana Lazebnik, Fei-Fei Li, Rob Fergus, and Antonio Torralba.
Global spatial layout: spatial pyramid matching Spatial weighting the features Beyond bags of features: Adding spatial information.
1 Image Retrieval Hao Jiang Computer Science Department 2009.
Image alignment Image from
Discriminative and generative methods for bags of features
Bag-of-features models Many slides adapted from Fei-Fei Li, Rob Fergus, and Antonio Torralba.
CVPR 2008 James Philbin Ondˇrej Chum Michael Isard Josef Sivic
Beyond bags of features: Part-based models Many slides adapted from Fei-Fei Li, Rob Fergus, and Antonio Torralba.
Bag of Features Approach: recent work, using geometric information.
Effective Image Database Search via Dimensionality Reduction Anders Bjorholm Dahl and Henrik Aanæs IEEE Computer Society Conference on Computer Vision.
Image classification Given the bag-of-features representations of images from different classes, how do we learn a model for distinguishing them?
Beyond bags of features: Adding spatial information Many slides adapted from Fei-Fei Li, Rob Fergus, and Antonio Torralba.
1 Image Recognition - I. Global appearance patterns Slides by K. Grauman, B. Leibe.
Lecture 28: Bag-of-words models
Beyond bags of features: Adding spatial information Many slides adapted from Fei-Fei Li, Rob Fergus, and Antonio Torralba.
Bag-of-features models
Generative learning methods for bags of features
Agenda Introduction Bag-of-words model Visual words with spatial location Part-based models Discriminative methods Segmentation and recognition Recognition-based.
“Bag of Words”: recognition using texture : Advanced Machine Perception A. Efros, CMU, Spring 2006 Adopted from Fei-Fei Li, with some slides from.
Lecture XI: Object Recognition (2)
By Suren Manvelyan,
Discriminative and generative methods for bags of features
Machine learning & category recognition Cordelia Schmid Jakob Verbeek.
Bag-of-features models. Origin 1: Texture recognition Texture is characterized by the repetition of basic elements or textons For stochastic textures,
Indexing Techniques Mei-Chen Yeh.
Exercise Session 10 – Image Categorization
Real-time Action Recognition by Spatiotemporal Semantic and Structural Forest Tsz-Ho Yu, Tae-Kyun Kim and Roberto Cipolla Machine Intelligence Laboratory,
Step 3: Classification Learn a decision rule (classifier) assigning bag-of-features representations of images to different classes Decision boundary Zebra.
CSE 185 Introduction to Computer Vision Pattern Recognition.
The EM algorithm, and Fisher vector image representation
CSE 473/573 Computer Vision and Image Processing (CVIP)
Classification 2: discriminative models
Watch, Listen and Learn Sonal Gupta, Joohyun Kim, Kristen Grauman and Raymond Mooney -Pratiksha Shah.
Computational Photography Tamara Berg Features. Representing Images Keep all the pixels! Pros? Cons?
Bag-of-features models. Origin 1: Texture recognition Texture is characterized by the repetition of basic elements or textons For stochastic textures,
Svetlana Lazebnik, Cordelia Schmid, Jean Ponce
SVM-KNN Discriminative Nearest Neighbor Classification for Visual Category Recognition Hao Zhang, Alex Berg, Michael Maire, Jitendra Malik.
Video Google: A Text Retrieval Approach to Object Matching in Videos Josef Sivic and Andrew Zisserman.
Classical Methods for Object Recognition Rob Fergus (NYU)
ECE 5984: Introduction to Machine Learning Dhruv Batra Virginia Tech Topics: –Unsupervised Learning: Kmeans, GMM, EM Readings: Barber
Visual Categorization With Bags of Keypoints Original Authors: G. Csurka, C.R. Dance, L. Fan, J. Willamowski, C. Bray ECCV Workshop on Statistical Learning.
Methods for classification and image representation
Grouplet: A Structured Image Representation for Recognizing Human and Object Interactions Bangpeng Yao and Li Fei-Fei Computer Science Department, Stanford.
Machine Learning Overview Tamara Berg CS 560 Artificial Intelligence Many slides throughout the course adapted from Svetlana Lazebnik, Dan Klein, Stuart.
CS 1699: Intro to Computer Vision Bias-Variance Trade-off + Other Models and Problems Prof. Adriana Kovashka University of Pittsburgh November 3, 2015.
A SAMPLE RECOGNITION PROBLEM Joseph Tighe University of North Carolina at Chapel Hill.
CS654: Digital Image Analysis
A PPLICATIONS OF TOPIC MODELS Daphna Weinshall B Slides credit: Joseph Sivic, Li Fei-Fei, Brian Russel and others.
CS598:V ISUAL INFORMATION R ETRIEVAL Lecture IV: Image Representation: Feature Coding and Pooling.
Lecture IX: Object Recognition (2)
Learning Mid-Level Features For Recognition
Paper Presentation: Shape and Matching
Mixtures of Gaussians and Advanced Feature Encoding
Digit Recognition using SVMS
By Suren Manvelyan, Crocodile (nile crocodile?) By Suren Manvelyan,
CS 1674: Intro to Computer Vision Scene Recognition
Some slides: courtesy of David Jacobs
Presentation transcript:

Review: Intro to recognition Recognition tasks Machine learning approach: training, testing, generalization Example classifiers Nearest neighbor Linear classifiers

Image features Spatial support: Pixel or local patchSegmentation region Bounding boxWhole image

Image features We will focus mainly on global image features for whole-image classification tasks GIST descriptors Bags of features Spatial pyramids

GIST descriptors Oliva & Torralba (2001)

Bags of features

Origin 1: Texture recognition Texture is characterized by the repetition of basic elements or textons For stochastic textures, it is the identity of the textons, not their spatial arrangement, that matters Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003

Origin 1: Texture recognition Universal texton dictionary histogram Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003

Origin 2: Bag-of-words models Orderless document representation: frequencies of words from a dictionary Salton & McGill (1983)

Origin 2: Bag-of-words models US Presidential Speeches Tag Cloud Orderless document representation: frequencies of words from a dictionary Salton & McGill (1983)

Origin 2: Bag-of-words models US Presidential Speeches Tag Cloud Orderless document representation: frequencies of words from a dictionary Salton & McGill (1983)

Origin 2: Bag-of-words models US Presidential Speeches Tag Cloud Orderless document representation: frequencies of words from a dictionary Salton & McGill (1983)

1.Extract local features 2.Learn “visual vocabulary” 3.Quantize local features using visual vocabulary 4.Represent images by frequencies of “visual words” Bag-of-features steps

1. Local feature extraction Regular grid or interest regions

Normalize patch Detect patches Compute descriptor Slide credit: Josef Sivic 1. Local feature extraction

… Slide credit: Josef Sivic

2. Learning the visual vocabulary … Slide credit: Josef Sivic

2. Learning the visual vocabulary Clustering … Slide credit: Josef Sivic

2. Learning the visual vocabulary Clustering … Slide credit: Josef Sivic Visual vocabulary

Review: K-means clustering Want to minimize sum of squared Euclidean distances between features x i and their nearest cluster centers m k Algorithm: Randomly initialize K cluster centers Iterate until convergence: Assign each feature to the nearest center Recompute each cluster center as the mean of all features assigned to it

Example codebook … Source: B. Leibe Appearance codebook

Another codebook Appearance codebook … Source: B. Leibe

1.Extract local features 2.Learn “visual vocabulary” 3.Quantize local features using visual vocabulary 4.Represent images by frequencies of “visual words” Bag-of-features steps

Visual vocabularies: Details How to choose vocabulary size? Too small: visual words not representative of all patches Too large: quantization artifacts, overfitting Right size is application-dependent Improving efficiency of quantization Vocabulary trees (Nister and Stewenius, 2005) Improving vocabulary quality Discriminative/supervised training of codebooks Sparse coding, non-exclusive assignment to codewords More discriminative bag-of-words representations Fisher Vectors (Perronnin et al., 2007), VLAD (Jegou et al., 2010) Incorporating spatial information

Bags of features for action recognition Juan Carlos Niebles, Hongcheng Wang and Li Fei-Fei, Unsupervised Learning of Human Action Categories Using Spatial-Temporal Words, IJCV 2008.Unsupervised Learning of Human Action Categories Using Spatial-Temporal Words Space-time interest points

Bags of features for action recognition Juan Carlos Niebles, Hongcheng Wang and Li Fei-Fei, Unsupervised Learning of Human Action Categories Using Spatial-Temporal Words, IJCV 2008.Unsupervised Learning of Human Action Categories Using Spatial-Temporal Words

Spatial pyramids level 0 Lazebnik, Schmid & Ponce (CVPR 2006)

Spatial pyramids level 0 level 1 Lazebnik, Schmid & Ponce (CVPR 2006)

Spatial pyramids level 0 level 1 level 2 Lazebnik, Schmid & Ponce (CVPR 2006)

Results: Scene category dataset Multi-class classification results (100 training images per class)

Results: Caltech101 dataset Multi-class classification results (30 training images per class)