Difference amplifier.

Slides:



Advertisements
Similar presentations
Test Parameter Typ. Unit Typical Description µA Input Bias Current
Advertisements

Operational Amplifiers
Operational Amplifiers 1. Copyright  2004 by Oxford University Press, Inc. Microelectronic Circuits - Fifth Edition Sedra/Smith2 Figure 2.1 Circuit symbol.
Analog-to-Digital Converter (ADC) And
1 Analog to Digital Conversion ADC Essentials A/D Conversion Techniques Interfacing the ADC to the IBM PC DAS (Data Acquisition Systems) How to select.
Sensors Interfacing.
Describe and analyze the operation of several types of comparator circuits. Describe and analyze the operation of several types of summing amplifiers.
Digital to Analog and Analog to Digital Conversion
Lecture 9: D/A and A/D Converters
10/23/2003ME DAC Lecture1 DAC Sunij Chacko Pierre Emmanuel Deliou Thomas Holst Used with modification.
Analogue to Digital Conversion
Interfacing Analog and Digital Circuits
DIGITAL SYSTEMS TCE INTERFACING WITH ANALOG DEVICES (Week 12)
Interfacing with the Analog World Wen-Hung Liao, Ph.D.
* Operational Amplifiers * Op-Amp Circuits * Op-Amp Analysis
Experiment 6 -- Digital Switching
Introduction to Analog-to-Digital Converters
Department of Information Engineering357 Operation amplifier The tail, large impedance gives high CMRR Mirror as active load. High gain Follower as buffer.
Astable multivibrators I
Introduction to Op Amps
PH4705/ET4305: A/D: Analogue to Digital Conversion
Digital to Analog Converters
TIMERS.
Digital to Analog and Analog to Digital Conversion
Ch7 Operational Amplifiers and Op Amp Circuits
Announcements Assignment 3 due now, or by tomorrow 5pm in my mailbox Assignment 4 posted, due next week –Thursday in class, or Friday 5pm in my mailbox.
Content Op-amp Application Introduction Inverting Amplifier
Characteristics of Op-Amp &
Electronic Devices Ninth Edition Floyd Chapter 13.
Integrator Op Amp Amplifier
Non-linear application Inverting Schmitt Trigger
EKT314/4 Electronic Instrumentation
ADC & DAC Signal Conversions.
Chapter 13 Linear-Digital ICs. Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey All rights reserved. Electronic Devices.
Analog to Digital conversion. Introduction  The process of converting an analog signal into an equivalent digital signal is known as Analog to Digital.
10/11/2015 Operational Amplifier Characterization Chapter 3.
Module 4 Operational Amplifier
Introduction to Operational Amplifiers
1 Analogue Electronic 2 EMT 212 Chapter 2 Op-Amp Applications and Frequency Response By En. Tulus Ikhsan Nasution.
Fundamentals of Electric Circuits Chapter 5 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
PREPARED BY V.SANDHIYA LECT/ ECE UNIT- 3 APPLICATIONS OF OP-AMP 1.
Digital to Analog Converter (DAC)
3/19/2016 Subject Name: LINEAR IC’s AND APPLICATIONS Subject Code:10EC46 Prepared By: Kumutha A Department: Electronics and Communication Date:
EE101-Lecture 8 Operational Amplifier Basics of amplifiers EE101 Fall 2012 Lect 8- Kang1 Noninverting amplifier & Inverting amplifier.
EKT 314/4 WEEK 5 : CHAPTER 3 SIGNAL CONDITIONING ELECTRONIC INSTRUMENTATION.
1 - By Sandip B. kheni( ) Bhavin V. Mangukiya( )
5-2-3 Analogue to Digital Converters (ADC). Analogue to Digital Conversion The process is now the opposite of that studied in Topic Now we wish.
Function Generators. FUNCTION GENERATORS Function generators, which are very important and versatile instruments. provide a variety of output waveforms.
An operational amplifier (Op-Amp) is a differential amplifier that amplifies the difference of voltages applied to its two input terminals (differential.
Module 2 Operational Amplifier Basics
Lecture Notes / PPT UNIT III
Analog-Digital Conversion. Other types of ADC i. Dual Slope ADCs use a capacitor connected to a reference voltage. the capacitor voltage starts at zero.
Electronic Devices and Circuit Theory
MECH 373 Instrumentation and Measurements
Electronic Devices Ninth Edition Floyd Chapter 13.
Fundamentals of Electric Circuits Chapter 5
Analog-Digital Conversion
EI205 Lecture 13 Dianguang Ma Fall 2008.
Chapter 13 Linear-Digital ICs
Digital Control Systems Waseem Gulsher
Lesson 8: Analog Signal Conversion
Digital Control Systems Waseem Gulsher
Content Op-amp Application Introduction Inverting Amplifier
Conversation between Analogue and Digital System
Chapter 4 – Operational Amplifiers – Part 2
Medical electronics II RC operation amplifier circuits
Fundamentals of Electric Circuits Chapter 5
Chapter 5 Operational Amplifiers
Chapter 7 Converters.
Presentation transcript:

Difference amplifier

Instrumentation Amplifier Buffer Difference amplifier application:instrumentation amplifier hfhfhfh

The instrumentation amplifier As suggested before, it is beneficial to be able to adjust the gain of the amplifier circuit without having to change more than one resistor value, as is necessary with the previous design of differential amplifier. The so-called instrumentation builds on the last version of differential amplifier to give us that capability: This intimidating circuit is constructed from a buffered differential amplifier stage with three new resistors linking the two buffer circuits together. Consider all resistors to be of equal value except for Rgain. The negative feedback of the upper-left op-amp causes the voltage at point 1 (top of Rgain) to be equal to V1. Likewise, the voltage at point 2 (bottom of Rgain) is held to a value equal to V2. This establishes a voltage drop across Rgain equal to the voltage difference between V1 and V2. That voltage drop causes a current through Rgain, and since the feedback loops of the two input op-amps draw no current, that same amount of current through Rgain must be going through the two "R" resistors above and below it.

This produces a voltage drop between points 3 and 4 equal to: The regular differential amplifier on the right-hand side of the circuit then takes this voltage drop between points 3 and 4, and amplifies it by a gain of 1 (assuming again that all "R" resistors are of equal value). Though this looks like a cumbersome way to build a differential amplifier, it has the distinct advantages of possessing extremely high input impedances on the V1 and V2 inputs (because they connect straight into the noninverting inputs of their respective op-amps), and adjustable gain that can be set by a single resistor. Manipulating the above formula a bit, we have a general expression for overall voltage gain in the instrumentation amplifier: Though it may not be obvious by looking at the schematic, we can change the differential gain of the instrumentation amplifier simply by changing the value of one resistor: Rgain. Yes, we could still change the overall gain by changing the values of some of the other resistors, but this would necessitate balanced resistor value changes for the circuit to remain symmetrical. Please note that the lowest gain possible with the above circuit is obtained with Rgain completely open (infinite resistance), and that gain value is 1.

Differentiator and integrator circuits By introducing electrical reactance into the feedback loops of op-amp amplifier circuits, we can cause the output to respond to changes in the input voltage over time. Drawing their names from their respective calculus functions, the integrator produces a voltage output proportional to the product (multiplication) of the input voltage and time; and the differentiator (not to be confused with differential) produces a voltage output proportional to the input voltage's rate of change. Capacitance can be defined as the measure of a capacitor's opposition to changes in voltage. The greater the capacitance, the more the opposition. Capacitors oppose voltage change by creating current in the circuit: that is, they either charge or discharge in response to a change in applied voltage. So, the more capacitance a capacitor has, the greater its charge or discharge current will be for any given rate of voltage change across it. The equation for this is quite simple:

The dv/dt fraction is a calculus expression representing the rate of voltage change over time. If the DC supply in the above circuit were steadily increased from a voltage of 15 volts to a voltage of 16 volts over a time span of 1 hour, the current through the capacitor would most likely be very small, because of the very low rate of voltage change (dv/dt = 1 volt / 3600 seconds). However, if we steadily increased the DC supply from 15 volts to 16 volts over a shorter time span of 1 second, the rate of voltage change would be much higher, and thus the charging current would be much higher (3600 times higher, to be exact). Same amount of change in voltage, but vastly different rates of change, resulting in vastly different amounts of current in the circuit. We can build an op-amp circuit which measures change in voltage by measuring current through a capacitor, and outputs a voltage proportional to that current.

The formula for determining voltage output for the differentiator is as follows: The right-hand side of the capacitor is held to a voltage of 0 volts, due to the "virtual ground" effect. Therefore, current "through" the capacitor is solely due to change in the input voltage. A steady input voltage won't cause a current through C, but a changing input voltage will. Capacitor current moves through the feedback resistor, producing a drop across it, which is the same as the output voltage. A linear, positive rate of input voltage change will result in a steady negative voltage at the output of the op-amp. Conversely, a linear, negative rate of input voltage change will result in a steady positive voltage at the output of the op-amp. This polarity inversion from input to output is due to the fact that the input signal is being sent (essentially) to the inverting input of the op-amp, so it acts like the inverting amplifier mentioned previously. The faster the rate of voltage change at the input (either positive or negative), the greater the voltage at the output.

the op-amp circuit would generate an output voltage proportional to the magnitude and duration that an input voltage signal has deviated from 0 volts. Stated differently, a constant input signal would generate a certain rate of change in the output voltage: differentiation in reverse. To do this, all we have to do is swap the capacitor and resistor in the previous circuit: As before, the negative feedback of the op-amp ensures that the inverting input will be held at 0 volts (the virtual ground). If the input voltage is exactly 0 volts, there will be no current through the resistor, therefore no charging of the capacitor, and therefore the output voltage will not change. We cannot guarantee what voltage will be at the output with respect to ground in this condition, but we can say that the output voltage will be constant.

However, if we apply a constant, positive voltage to the input, the op-amp output will fall negative at a linear rate, in an attempt to produce the changing voltage across the capacitor necessary to maintain the current established by the voltage difference across the resistor. Conversely, a constant, negative voltage at the input results in a linear, rising (positive) voltage at the output. The output voltage rate-of-change will be proportional to the value of the input voltage. The formula for determining voltage output for the integrator is as follows:

REVIEW: A differentiator circuit produces a constant output voltage for a steadily changing input voltage. An integrator circuit produces a steadily changing output voltage for a constant input voltage. Both types of devices are easily constructed, using reactive components (usually capacitors rather than inductors) in the feedback part of the circuit.

With the inverting input grounded (maintained at zero volts), the output voltage will be dictated by the magnitude and polarity of the voltage at the noninverting input. If that voltage happens to be positive, the op-amp will drive its output positive as well, feeding that positive voltage back to the noninverting input, which will result in full positive output saturation. On the other hand, if the voltage on the noninverting input happens to start out negative, the op-amp's output will drive in the negative direction, feeding back to the noninverting input and resulting in full negative saturation. What we have here is a circuit whose output is bistable: stable in one of two states (saturated positive or saturated negative). Once it has reached one of those saturated states, it will tend to remain in that state, unchanging. What is necessary to get it to switch states is a voltage placed upon the inverting (-) input of the same polarity, but of a slightly greater magnitude. For example, if our circuit is saturated at an output voltage of +12 volts, it will take an input voltage at the inverting input of at least +12 volts to get the output to change. When it changes, it will saturate fully negative. So, an op-amp with positive feedback tends to stay in whatever output state its already in. It "latches" between one of two states, saturated positive or saturated negative. Technically, this is known as hysteresis. Hysteresis can be a useful property for a comparator circuit to have. As we've seen before, comparators can be used to produce a square wave from any sort of ramping waveform (sine wave, triangle wave, sawtooth wave, etc.) input. If the incoming AC waveform is noise-free (that is, a "pure" waveform), a simple comparator will work just fine.

Non-linear application in op-amp Non-linear application is where the op-amp operate in non-linear region By comparing these two input voltages: positive input voltages, V+ and negative input voltage, V- where: VO = VCC if V+ > V- VO = -VCC if V+ < V- Input current, Ii = 0

Op-amp voltage comparator A standard op-amp operating in open loop configuration (without negative feedback) can be used as a comparator. When the non-inverting input (V+) is at a higher voltage than the inverting input (V-), the high gain of the op-amp causes it to output the most positive voltage it can. When the non-inverting input (V+) drops below the inverting input (V-), the op-amp outputs the most negative voltage it can. Since the output voltage is limited by the supply voltage, for an op-amp that uses a balanced, split supply, (powered by ± VS) this action can be written: V0 = A(V1 – V2 )

Non-linear application: Comparator (a) Input Voltage of Comparator Vo(V) 10 -5 t VS(V) Compare V+ and V- V+=0 V-=VS When: VS>0,V+>V- so Vo=10V VS<0,V+<V- so Vo=-5V (b) Output Voltage of Comparator non-linear application:comparator hfhfhfh

Non-linear application Inverting Schmitt Trigger + Positive Feedback non-linear application:schmitt trigger hfhfhfh

Non-linear application Schmitt Trigger (b) Input Voltage of Schmitt Trigger Vo(V) 15 -15 t VS(V) 7.5 -7.5 (a) Transfer Characteristic of Schmitt Trigger Vo(V) VS(V) -7.5 7.5 -10 10 15 -15 (c) Output Voltage of Schmitt Trigger non-linear application:schmitt trigger hfhfhfh

Zero Crossing Detector Zero-crossing detector is an applied form of comparator. Either of the op-amp basic comparator circuits discussed can be employed as the zero-crossing detector provided the reference voltage Vref is made zero.  Zero-crossing detector using inverting op-amp comparator is depicted in figure. The output voltage waveform shown in figure indicates when and in what direction an input signal vin crosses zero volt. In some applications the input signal may be low frequency one (i.e. input may be a slowly changing waveform). In such a case output voltage vOUT may not switch quickly from one saturation state to the other. Because of the noise at the input terminals of the op-amp, there may be fluctuation in output voltage between two saturation states (+ Vsat and – Vsat voltages). Thus zero crossings may be detected for noise voltages as well as input signal vin. Both of these problems can be overcome, if we use regenerative or positive feeding causing the output voltage vout to change faster and eliminating the false output transitions that may be caused due to noise at the input of the op-amp.

Analog to Digital Conversion ADC Essentials A/D Conversion Techniques Interfacing the ADC to the IBM PC DAS (Data Acquisition Systems) How to select and use an ADC A low cost DAS for the IBM PC

Why ADC ? Digital Signal Processing is more popular Easy to implement, modify, … Low cost Data from real world are typically Analog Needs conversion system from raw measurements to digital data Consists of Amplifier, Filters Sample and Hold Circuit, Multiplexer ADC Chap 0

ADC Essentials Basic I/O Relationship ADC is Rationing System n bits ADC Number of discrete output level : 2n Quantum LSB size Q = LSB = FS / 2n Quantization Error 1/2 LSB Reduced by increasing n ADC Essentials Basic I/O Relationship ADC is Rationing System x = Analog input / Reference Fraction: 0 ~ 1 Chap 0

Converter Errors Hard to remove Integral Linearity Error Offset Error Differential Linearity Error Nonlinear Error Hard to remove Offset Error Gain Error Can be eliminated by initial adjustments Chap 0

Terminologies Converter Resolution The smallest change required in the analog input of an ADC to change its output code by one level Converter Accuracy The difference between the actual input voltage and the full-scale weighted equivalent of the binary output code Maximum sum of all converter errors including quantization error Conversion Time Required time (tc) before the converter can provide valid output data Converter Throughput Rate The number of times the input signal can be sampled maintaining full accuracy Inverse of the total time required for one successful conversion Inverse of Conversion time if No S/H(Sample and Hold) circuit is used Chap 0

Analog Input Signal Typical Input Range Typically, Differential or Single-ended input signal of a single polarity Typical Input Range 0 ~ 10V and 0 ~ 5V If Actual input signal does not span Full Input range Some of the converter output code never used Waste of converter dynamic range Greater relative effects of the converter errors on output Matching input signal and input range Prescaling input signal using OP Amp In a final stage of preconditioning circuit By proportionally scaling down the reference signal If reference signal is adjustable Chap 0

Outputs and Analog Reference Signal I/O of typical ADC ADC output Number of bits 8 and 12 bits are typical 10, 14, 16 bits also available Typically natural binary BCD (3½ BCD) For digital panel meter, and digital multimeter Errors in reference signal From Initial Adjustment Drift with time and temperature Cause Gain error in Transfer characteristics To realize full accuracy of ADC Precise and stable reference is crucial Typically, precision IC voltage reference is used 5ppm/C ~ 100ppm/C Chap 0

Control Signals HBE / LBE Start BUSY / EOC From CPU To read Output word after EOC HBE High Byte Enable LBE Low Byte Enable Start From CPU Initiate the conversion process BUSY / EOC To CPU Conversion is in progress 0=Busy: In progress 1=EOC: End of Conversion Chap 0

A/D Conversion Techniques Counter or Tracking ADC Successive Approximation ADC Most Commonly Used Dual Slop Integrating ADC Voltage to Frequency ADC Parallel or Flash ADC Fast Conversion Chap 0

Counter Type ADC Operation Reset and Start Counter Block diagram DAC convert Digital output of Counter to Analog signal Compare Analog input and Output of DAC Vi < VDAC Continue counting Vi = VDAC Stop counting Digital Output = Output of Counter Disadvantage Conversion time is varied 2n Clock Period for Full Scale input Block diagram Waveform Chap 0

Counter Type ADC Operation Reset and Start Counter Block diagram DAC convert Digital output of Counter to Analog signal Compare Analog input and Output of DAC Vi < VDAC Continue counting Vi = VDAC Stop counting Digital Output = Output of Counter Disadvantage Conversion time is varied 2n Clock Period for Full Scale input Block diagram Waveform Chap 0

Tracking Type ADC Tracking or Servo Type Using Up/Down Counter to track input signal continuously For slow varying input Can be used as S/H circuit By stopping desired instant Digital Output Long Hold Time Disabling UP (Down) control, Converter generate Minimum (Maximum) value reached by input signal over a given period Chap 0

Successive Approximation ADC Most Commonly used in medium to high speed Converters Based on approximating the input signal with binary code and then successively revising this approximation until best approximation is achieved SAR(Successive Approximation Register) holds the current binary value Block Diagram Chap 0

Successive Approximation ADC Circuit waveform Logic Flow Conversion Time n clock for n-bit ADC Fixed conversion time Serial Output is easily generated Bit decision are made in serial order Chap 0

Dual Slope Integrating ADC Excellent Noise Rejection High frequency noise cancelled out by integration Proper T1 eliminates line noise Easy to obtain good resolution Low Speed If T1 = 60Hz, converter throughput rate < 30 samples/s Operation Integrate Reset and integrate Thus  Applications DPM(Digital Panel Meter), DMM(Digital Multimeter), … Chap 0

Voltage to Frequency ADC VFC (Voltage to Frequency Converter) Convert analog input voltage to train of pulses Counter Generates Digital output by counting pulses over a fixed interval of time Low Speed Good Noise Immunity High resolution For slow varying signal With long conversion time Applicable to remote data sensing in noisy environments Digital transmission over a long distance Chap 0

Parallel or Flash ADC Very High speed conversion Up to 100MHz for 8 bit resolution Video, Radar, Digital Oscilloscope Single Step Conversion 2n –1 comparator Precision Resistive Network Encoder Resolution is limited Large number of comparator in IC Chap 0