Best of All Worlds Text Analytics and Text Mining and Taxonomy Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services.

Slides:



Advertisements
Similar presentations
Top Tips Enterprise Content Management Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services
Advertisements

Metadata Strategies Alternatives for creating value from metadata Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services.
Improving Navigation and Findability Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services
Cyborg Categorization The Basics Tom Reamy Knowledge Architect Intranet Consultant.
Beyond Sentiment New Dimensions for Social Media A Panel Discussion of Trends and Ideas Dave Hills, Twelvefold Media Mike Lazarus, Atigeo, LLC Moderator:
Copyright © 2012, SAS Institute Inc. All rights reserved. #analytics2012 Quick Start for Text Analytics Tom Reamy Chief Knowledge Architect KAPS Group.
Enterprise Information Architecture A Platform for Integrating Your Organization’s Information and Knowledge Activities Tom Reamy Chief Knowledge Architect.
Faceted Navigation: Search and Browse Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services
Taxonomy Development Case Studies
Innovation in Search? Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services
Model of Taxonomy Development Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services
Knowledge Architecture Process & Case Studies Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services
Semantic Infrastructure Workshop Development Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services
Semantic Infrastructure Workshop Development Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services
Semantic Infrastructure Workshop Applications Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services
Taxonomy Boot Camp Panel Text Analytics Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services
Improving Search for Discovery Tom Reamy Chief Knowledge Architect KAPS Group Program Chair – Text Analytics World Knowledge Architecture Professional.
Automatic Facets: Faceted Navigation and Entity Extraction Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services.
Copyright © 2011, SAS Institute Inc. All rights reserved. #analytics2011 Text Analytics Evaluation A Case Study: Amdocs Tom Reamy Chief Knowledge Architect.
Beyond Sentiment Mining Social Media A Panel Discussion of Trends and Ideas Marie Wallace, IBM Marcello Pellacani, Expert System Fabio Lazzarini, CRIBIS.
Enterprise Semantic Infrastructure Workshop Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services
Beyond Sentiment Mining Social Media Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services
Facets and Faceted Navigation Development Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services
Expanding Enterprise Roles for Librarians Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services
Text Analytics Workshop Development Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services
Best of Both Worlds Text Analytics and Text Mining Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services
Selecting Taxonomy Software Who, Why, How Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services
Building a Foundation for Info Apps Tom Reamy Chief Knowledge Architect KAPS Group Program Chair – Text Analytics World Knowledge Architecture Professional.
Enterprise Search/ Text Analytics Evaluation Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services
Text Analytics And Text Mining Best of Text and Data
Essentials of Knowledge Architecture Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services
New Directions in Social Media Tom Reamy Chief Knowledge Architect KAPS Group
SemTech Text Analytics Evaluation Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services
Text Analytics and Taxonomies Tom Reamy Chief Knowledge Architect KAPS Group
Smart Text How to Turn Big Text into Big Data Tom Reamy Chief Knowledge Architect KAPS Group Program Chair – Text Analytics World.
Basic Level Categories for Knowledge Representation Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services
Integrating an Enterprise Taxonomy with Local Variations Tom Reamy Chief Knowledge Architect KAPS Group Program Chair – Text Analytics World Knowledge.
Applying Semantics to Search Text Analytics Tom Reamy Chief Knowledge Architect KAPS Group Enterprise Search Summit New York.
Text Analytics Workshop Applications Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services
Taxonomy and Social Media Social Taxonomies Tom Reamy Chief Knowledge Architect KAPS Group Program Chair – Text Analytics World Knowledge Architecture.
Content Categorization Tools Taxonomies & Technologies for Infrastructure Solutions Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture.
Text Analytics Summit Text Analytics Evaluation Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services
Text Analytics Software Choosing the Right Fit Tom Reamy Chief Knowledge Architect KAPS Group Text Analytics World October 20.
New Directions in Social Media Tom Reamy Chief Knowledge Architect KAPS Group
Semantic Infrastructure Workshop Applications Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services
Metadata and Taxonomies The Best of Both Worlds Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services
Integrating an Enterprise Taxonomy with Local Variations Tom Reamy Chief Knowledge Architect KAPS Group Taxonomy Boot Camp.
Text Analytics Mini-Workshop Quick Start Tom Reamy Chief Knowledge Architect KAPS Group Program Chair – Text Analytics World Knowledge Architecture Professional.
Enterprise Semantic Infrastructure Workshop Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services
Folksonomy Folktales Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services
Selecting Taxonomy Software Who, Why, How Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services
Text Analytics Workshop Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services
Advanced Semantics and Search Beyond Tag Clouds and Taxonomies Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services.
Text Analytics for Search Applications Workshop Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services
Text Analytics A Tool for Taxonomy Development Tom Reamy Chief Knowledge Architect KAPS Group Program Chair – Text Analytics World Knowledge Architecture.
Text Analytics Workshop Applications Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services
Text Analytics Workshop Tom Reamy Chief Knowledge Architect KAPS Group Program Chair – Text Analytics World Knowledge Architecture Professional Services.
Taxonomy and Text Analytics Case Studies Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services
Taxonomy Development An Infrastructure Model Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services
Deep Text New Approaches in Text Analytics and Knowledge Organization Tom Reamy Chief Knowledge Architect KAPS Group Author: Deep.
Text Analytics Webinar
Tom Reamy Chief Knowledge Architect KAPS Group
Tom Reamy Chief Knowledge Architect KAPS Group
Enterprise Social Networks A New Semantic Foundation
Program Chair: Tom Reamy Chief Knowledge Architect
Using Text Analytics to Spot Fake News
Text Analytics Workshop: Introduction
Text Analytics Workshop
Program Chair: Tom Reamy Chief Knowledge Architect
Expertise Location Basic Level Categories
Presentation transcript:

Best of All Worlds Text Analytics and Text Mining and Taxonomy Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services

2 Agenda  Text Analytics Introduction – Text Analytics – Text Mining  Case Study – Taxonomy Development  Text Analytics, Text Mining, and Taxonomy,  Text Analytics Applications – New Directions – Search & Info Apps – Expertise Analysis, Behavior Prediction, More  Conclusions

3 KAPS Group: General  Knowledge Architecture Professional Services – Network of Consultants  Partners – SAS, SAP, IBM, FAST, Smart Logic, Concept Searching – Attensity, Clarabridge, Lexalytics,  Strategy – IM & KM - Text Analytics, Social Media, Integration  Services: – Taxonomy/Text Analytics development, consulting, customization – Text Analytics Quick Start – Audit, Evaluation, Pilot – Social Media: Text based applications – design & development  Clients: – Genentech, Novartis, Northwestern Mutual Life, Financial Times, Hyatt, Home Depot, Harvard Business Library, British Parliament, Battelle, Amdocs, FDA, GAO, etc.  Applied Theory – Faceted taxonomies, complexity theory, natural categories, emotion taxonomies Presentations, Articles, White Papers –

4 Taxonomy, Text Mining, and Text Analytics Text Analytics Features  Noun Phrase Extraction – Catalogs with variants, rule based dynamic – Multiple types, custom classes – entities, concepts, events – Feeds facets  Summarization – Customizable rules, map to different content  Fact Extraction – Relationships of entities – people-organizations-activities – Ontologies – triples, RDF, etc.  Sentiment Analysis – Rules – Objects and phrases – positive and negative

5 Taxonomy, Text Mining, and Text Analytics Text Analytics Features  Auto-categorization – Training sets – Bayesian, Vector space – Terms – literal strings, stemming, dictionary of related terms – Rules – simple – position in text (Title, body, url) – Semantic Network – Predefined relationships, sets of rules – Boolean– Full search syntax – AND, OR, NOT – Advanced – DIST (#), PARAGRAPH, SENTENCE  This is the most difficult to develop  Build on a Taxonomy  Combine with Extraction – If any of list of entities and other words

6

Case Study – Categorization & Sentiment 7

8

9

10

11

12

13

Taxonomy and Text Analytics 14

Taxonomy and Text Analytics 15

Taxonomy, Text Mining, and Text Analytics Case Study – Taxonomy Development  Problem – 200,000 new uncategorized documents  Old taxonomy –need one that reflects change in corpus  Text mining, entity extraction, categorization  Content – 250,000 large documents, search logs, etc.  Bottom Up- terms in documents – frequency, date,  Clustering – suggested categories  Clustering – chunking for editors  Entity Extraction – people, organizations, Programming languages  Time savings – only feasible way to scan documents  Quality – important terms, co-occurring terms 16

Case Study – Taxonomy Development 17

Case Study – Taxonomy Development 18

Case Study – Taxonomy Development 19

20 Text Analytics Development

21 New Directions in Social Media Text Analytics, Text Mining, and Predictive Analytics  Two Systems of the Brain – Fast, System 1, Immediate patterns (TM) – Slow, System 2, Conceptual, reasoning (TA)  Text Analytics – pre-processing for TM – Discover additional structure in unstructured text – Behavior Prediction – adding depth in individual documents – New variables for Predictive Analytics, Social Media Analytics – New dimensions – 90% of information  Text Mining for TA– Semi-automated taxonomy development – Bottom Up- terms in documents – frequency, date, clustering – Improve speed and quality – semi-automatic

22 Text Analytics and Taxonomy Complimentary Information Platform  Taxonomy provides a consistent and common vocabulary – Enterprise resource – integrated not centralized  Text Analytics provides a consistent tagging – Human indexing is subject to inter and intra individual variation  Taxonomy provides the basic structure for categorization – And candidates terms  Text Analytics provides the power to apply the taxonomy – And metadata of all kinds  Text Analytics and Taxonomy Together – Platform – Consistent in every dimension – Powerful and economic

23 Taxonomy, Text Mining, and Text Analytics Metadata – Tagging – the Problem  How do you bridge the gap – taxonomy to documents?  Tagging documents with taxonomy nodes is tough – And expensive – central or distributed  Library staff –experts in categorization not subject matter – Too limited, narrow bottleneck – Often don’t understand business processes and business uses  Authors – Experts in the subject matter, terrible at categorization – Intra and Inter inconsistency, “intertwingleness” – Choosing tags from taxonomy – complex task – Folksonomy – almost as complex, wildly inconsistent – Resistance – not their job, cognitively difficult = non-compliance  Text Analytics is the answer(s)!

24 Taxonomy, Text Mining, and Text Analytics Metadata Tagging – the Solution  Mind the Gap – Manual, Automatic, Hybrid  All require human effort – issue of where and how effective  Manual - human effort is tagging (difficult, inconsistent)  Automatic and Hybrid - human effort is prior to tagging – Build on expertise – librarians on categorization, SME’s on subject terms  Hybrid Model – Publish Document -> Text Analytics analysis -> suggestions for categorization, entities, metadata - > present to author – Cognitive task is simple -> react to a suggestion instead of select from head or a complex taxonomy – Feedback – if author overrides -> suggestion for new category – Facets – Requires a lot of Metadata - Entity Extraction feeds facets  Hybrid – Automatic is really a spectrum – depends on context

25 Taxonomy, Text Mining, and Text Analytics Applications: Search  Multiple Knowledge Structures – Facet – orthogonal dimension of metadata – Taxonomy - Subject matter / aboutness – Ontology – Relationships / Facts Subject – Verb - Object  Software - Search, ECM, auto-categorization, entity extraction, Text Analytics and Text Mining  People – tagging, evaluating tags, fine tune rules and taxonomy  People – Users, social tagging, suggestions  Rich Search Results – context and conversation

26

27

28 Taxonomy, Text Mining, and Text Analytics Applications: Search-Based Applications  Platform for Information Applications – Content Aggregation – Duplicate Documents – save millions! – Text Mining – BI, CI – sentiment analysis – Combine with Data Mining – disease symptoms, new Predictive Analytics – Social – Hybrid folksonomy / taxonomy / auto-metadata – Social – expertise, categorize tweets and blogs, reputation – Ontology – travel assistant – SIRI  Use your Imagination!

29 Taxonomy, Text Mining, and Text Analytics Applications: Expertise Analysis  Sentiment Analysis to Expertise Analysis(KnowHow) – Know How, skills, “tacit” knowledge  Experts write and think differently  Basic level is lower, more specific – Levels: Superordinate – Basic – Subordinate Mammal – Dog – Golden Retriever – Furniture – chair – kitchen chair  Experts organize information around processes, not subjects  Build expertise categorization rules

30 Taxonomy, Text Mining, and Text Analytics Expertise – application areas  Taxonomy / Ontology development /design – audience focus – Card sorting – non-experts use superficial similarities  Business & Customer intelligence – add expertise to sentiment – Deeper research into communities, customer s  Text Mining - Expertise characterization of writer, corpus  eCommerce – Organization/Presentation of information – expert, novice  Expertise location- Generate automatic expertise characterization based on documents  Experiments - Pronoun Analysis – personality types – Essay Evaluation Software - Apply to expertise characterization Model levels of chunking, procedure words over content

31 Beyond Sentiment: Behavior Prediction Case Study – Telecom Customer Service  Problem – distinguish customers likely to cancel from mere threats  Analyze customer support notes  General issues – creative spelling, second hand reports  Develop categorization rules – First – distinguish cancellation calls – not simple – Second - distinguish cancel what – one line or all – Third – distinguish real threats

32 Beyond Sentiment Behavior Prediction – Case Study  Basic Rule – (START_20, (AND, – (DIST_7,"[cancel]", "[cancel-what-cust]"), – (NOT,(DIST_10, "[cancel]", (OR, "[one-line]", "[restore]", “[if]”)))))  Examples: – customer called to say he will cancell his account if the does not stop receiving a call from the ad agency. – cci and is upset that he has the asl charge and wants it off or her is going to cancel his act – ask about the contract expiration date as she wanted to cxl teh acct Combine sophisticated rules with sentiment statistical training and Predictive Analytics

33 Beyond Sentiment - Wisdom of Crowds Crowd Sourcing Technical Support  Example – Android User Forum  Develop a taxonomy of products, features, problem areas  Develop Categorization Rules: – “I use the SDK method and it isn't to bad a all. I'll get some pics up later, I am still trying to get the time to update from fresh 1.0 to 1.1.” – Find product & feature – forum structure – Find problem areas in response, nearby text for solution  Automatic – simply expose lists of “solutions” – Search Based application  Human mediated – experts scan and clean up solutions

34 Taxonomy, Text Mining, and Text Analytics Conclusions  Text Analytics is an essential platform for multiple applications  Text Analytics and Text Mining and Taxonomy are mutually enriching approaches  Sentiment Analysis, Beyond Positive & Negative  New emotion taxonomies, context around terms  New applications – Expertise, behavior prediction, etc.  Future – new kinds of applications: – Enterprise Search – Hybrid ECM model with text analytics – Expertise Analysis, Behavior Prediction, and more – Social Media and Big Data built from TM & TA – NeuroAnalytics – cognitive science meets taxonomy and more Watson is just the start

Questions? Tom Reamy KAPS Group Knowledge Architecture Professional Services

36 Resources  Books – Women, Fire, and Dangerous Things George Lakoff – Knowledge, Concepts, and Categories Koen Lamberts and David Shanks – Formal Approaches in Categorization Ed. Emmanuel Pothos and Andy Wills – The Mind Ed John Brockman Good introduction to a variety of cognitive science theories, issues, and new ideas – Any cognitive science book written after 2009

37 Resources  Conferences – Web Sites – Text Analytics World – – Text Analytics Summit – – Semtech –

38 Resources  Blogs – SAS-  LinkedIn Groups: – Text Analytics World – Text Analytics Group – Data and Text Professionals – Sentiment Analysis – Metadata Management – Semantic Technologies

39 Resources  Web Sites – Taxonomy Community of Practice: – Whitepaper – CM and Text Analytics - eetstextanalytics.pdf eetstextanalytics.pdf – Whitepaper – Enterprise Content Categorization strategy and development –

40 Resources  Articles – Malt, B. C Category coherence in cross-cultural perspective. Cognitive Psychology 29, – Rifkin, A Evidence for a basic level in event taxonomies. Memory & Cognition 13, – Shaver, P., J. Schwarz, D. Kirson, D. O’Conner Emotion Knowledge: further explorations of prototype approach. Journal of Personality and Social Psychology 52, – Tanaka, J. W. & M. E. Taylor Object categories and expertise: is the basic level in the eye of the beholder? Cognitive Psychology 23,