FIRB Microsistemi e Nanomateriali Magnetici Tematica T4 Films e Multistrati Nanocompositi Magnetici Multistrato Laboratorio Superfici M. Carbucicchio,

Slides:



Advertisements
Similar presentations
Compositional and morphological characterizations by SIMS, RBS and AFM Paolo Mazzoldi, N. Argiolas, G. Battaglin, C. Sada Physics Department G.Galilei,
Advertisements

Imaging the Magnetic Spin Structure of Exchange Coupled Thin Films Ralf Röhlsberger Hamburger Synchrotronstrahlungslabor (HASYLAB) am Deutschen Elektronen.
Giuseppe Dalba, La Fisica dei Raggi X, Dipartimento di Fisica, Università di Trento, a.a Transmission MATTER Scattering Compton Thomson Photoelectric.
INFM – National Research Center – Modena - Italy Alessandro di Bona (MO) Marco Liberati (MO) Paola Luches* (MO) Sergio Valeri (MO) Gian Carlo Gazzadi (MO)
Scanning near-field optical microscopy (SNOM) for magneto-optics Paolo Vavassori INFM - National Research Center on nanoStructures and Biosystems at Surfaces.
Uniaxial magnetic anisotropy tuned by nanoscale ripple formation: ion-sculpting of Co/Cu(001) thin films R. Moroni Unità INFM di Genova Dipartimento di.
Rare-earth-iron nanocrystalline magnets E.Burzo 1), C.Djega 2) 1) Faculty of Physics, Babes-Bolyai University, Cluj-Napoca 2) Universite Paris XII, France.
Electron [and ion] beam studies of magnetic nanostructures John Chapman, Department of Physics & Astronomy, University of Glasgow Synopsis Domain wall.
-CoFe 2 O 4 nanocomposite films Magnetic Properties of BaTiO 3 -CoFe 2 O 4 nanocomposite films :::: Grupo FCD :::: Centro de Física da Universidade do.
(see Bowen & Tanner, High
LaB6 Scanning Electron Source
Identification of Defects and Secondary Phases in Reactively Sputtered Cu 2 ZnSnS 4 Thin Films Vardaan Chawla, Stacey Bent, Bruce Clemens April 7 th, 2010.
Pulsed laser deposition of oxide epitaxial thin films
Electron Microscopy for Catalyst Characterization Dr. King Lun Yeung Department of Chemical Engineering Hong Kong University of Science and Technology.
X-ray Imaging and Spectroscopy of Individual Nanoparticles A. Fraile Rodríguez, F. Nolting Swiss Light Source Paul Scherrer Institut, Switzerland J. Bansmann.
June 19 10:00 Together with Van der Waals Zeeman Institute Mark de Vries Olivier Toulemonde Jorge Miguel Huib Luigjes Jeroen Goedkoop Friso van der Veen.
Structure of a Pentacene Monolayer Deposited on SiO 2 : Role of Trapped Interfacial Water Significance Organic semiconductors have potential applications.
Alternative representation of QW Phase accumulation model.
Combustion Driven Compaction of Nanostructured SmCo/Fe Exchange spring magnetic materials can potentially increase the energy-products of permanent magnets.
MSE-630 Magnetism MSE 630 Fall, 2008.
Topics in Magnetism III. Hysteresis and Domains
Transmission Electron Microscopy (TEM) By Austin Avery.
Brillouin Light Scattering Studies of Magnetic Multilayers Cyrus Reed, Milton From Department of Physics and Astronomy, Western Washington University What.
Ion-beam Sputtering Deposition Vacuum System Thickness Monitor Substrate Heater (1000°C) Kaufman Ion Gun Multiple Target Holder Ar Cathode Anode Glow Discharge.
EE 666 Advanced Semiconductor Devices All About Hard Drives Lili Ji Lili Ji
COATING RESEARCH & LMA G. Cagnoli, A. Cajfinger, V. Dolique, G. Cochez, R. Flaminio, D. Forest, J. Franc, M. Granata, C. Michel, N. Morgado,
RECX Thin film metrology.
Christian Stamm Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center I. Tudosa, H.-C. Siegmann, J. Stöhr (SLAC/SSRL) A. Vaterlaus.
Magnetic Properties of Materials
Howard H. Liebermann, Ph.D..  Structure of Metals  On atomic level, regular arrangement of atoms immersed in “sea” of “free electrons”.  Results of.
KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association Thermal stability of the ferromagnetic in-plane.
Quantum Electronic Effects on Growth and Structure of Thin Films P. Czoschke, Hawoong Hong, L. Basile, C.-M. Wei, M. Y. Chou, M. Holt, Z. Wu, H. Chen and.
Grazing Incidence X-ray Scattering from Patterned Nanoscale Dot Arrays D.S. Eastwood, D. Atkinson, B.K. Tanner and T.P.A. Hase Nanoscale Science and Technology.
Permanent Magnets based on Fe-Pt Alloys P.D. Thang, E. Brück, K.H.J. Buschow, F.R. de Boer Financial support by STW.
Development of Domain Theory By Ampere in The atomic magnetic moments are due to “electrical current continually circulating within the atom” -This.
STRUCTURE AND MAGNETIC PROPERTIES OF ULTRA-THIN MAGNETIC LAYERS
A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago Argonne National Laboratory Office of Science U.S. Department.
Preparation of films and their growth (a) Vacuum evaporation (b) Magnetron sputtering (c) Laser abrasion (d) Molecular beam epitaxy (e) Self-assembled.
Magnetic Properties Scott Allen Physics Department University of Guelph of nanostructures.
Daniel Wamwangi School of Physics
Stanford Synchrotron Radiation Laboratory More Thin Film X-ray Scattering: Polycrystalline Films Mike Toney, SSRL 1.Introduction (real space – reciprocal.
Applying X-Ray Diffraction in Material Analysis Dr. Ahmed El-Naggar.
Andreas Scholl, 1 Marco Liberati, 2 Hendrik Ohldag, 3 Frithjof Nolting, 4 Joachim Stöhr 3 1 Lawrence Berkeley National Laboratory, Berkeley, CA 94720,
Fabrication of oxide nanostructure using Sidewall Growth 田中研 M1 尾野篤志.
NEEP 541 – Radiation Damage in Steels Fall 2002 Jake Blanchard.
NANO 225 Micro/NanoFabrication Electron Microscopes 1.
Reminders for this week Homework #4 Due Wednesday (5/20) Lithography Lab Due Thursday (5/21) Quiz #3 on Thursday (5/21) – In Classroom –Covers Lithography,
Reminders Quiz#2 and meet Alissa and Mine on Wednesday –Quiz covers Bonding, 0-D, 1-D, 2-D, Lab #2 –Multiple choice, short answer, long answer (graphical.
Lecture 6: Microscopy II PHYS 430/603 material Laszlo Takacs UMBC Department of Physics.
Center for Materials for Information Technology an NSF Materials Science and Engineering Center Substrate Preparation Techniques Lecture 7 G.J. Mankey.
Center for Materials for Information Technology an NSF Materials Science and Engineering Center Sputtering Procedures Lecture 11 G.J. Mankey
Frank Batten College of Engineering & Technology Old Dominion University: Pulsed Laser Deposition of Niobium Nitride Thin Films APPLIED.
Electro-Ceramics Lab. Electrical Properties of SrBi 2 Ta 2 O 9 Thin Films Prepared by r.f. magnetron sputtering Electro-ceramics laboratory Department.
Rock magnetism.
The Structure and Dynamics of Solids
Study of some gilded film/glass interfaces and of one standard type of “liquid gold” XVI ICF TECHNICAL EXCHANGE CONFERENCE 9 th -12 th October 2004 Karlovy.
Epitaxial films of tetragonal Mn 3 Ga: magnetism and microstructure F. Casoli 1,*, J. Karel 2, P. Lupo 3, L. Nasi 1, S. Fabbrici 1,4, L. Righi 1,5, F.
Some motivations Key challenge of electronic materials – to control both electronic and magnetic properties – to process the full electronic states Prospects.
Specular reflectivity and off-specular scattering
Dr. A. R. Koymen New Physics in Magnetic Nanolayers
Magnetic Domains in Soft Ferromagnets
Re-entrant antiferromagnetism in the exchange-coupled IrMn/NiFe system
MBE Growth of Graded Structures for Polarized Electron Emitters
Effect of Heat Treatment on Properties of Sputtered Co100-xCux Film
P2-D125 Decrement of the Exchange Stiffness Constant of CoFeB thin films with Ar gas pressure. Jaehun Cho, Jinyong Jung, Ka-Eon Kim, Sukmock Lee Chun-Yeol.
© 2011 Cengage Learning Engineering. All Rights Reserved.
X-ray Scattering from Thin Films
Magnetic Properties and Superconductivity
Nanocharacterization (III)
Nano-engineered high-performance magneto-optic garnet materials
Presentation transcript:

FIRB Microsistemi e Nanomateriali Magnetici Tematica T4 Films e Multistrati Nanocompositi Magnetici Multistrato Laboratorio Superfici M. Carbucicchio, M. Rateo, M. Prezioso, F. Zini Dipartimento di Fisica – Università di Parma Steve Bennett Department of Synchrotron Radiation Daresbury Laboratory Warrington, UK Frank J. Berry Department of Chemistry The Open University Milton Keyness, UK Michel Labrune Laboratoire PMTM-CNRS Université Paris-13 Villetaneuse, France Collaborazioni: G. Asti, M. Ghidini, M. Solzi Laboratorio Magnetometria Dip. Fisica, Università, Parma A. Paoluzi, G. Turilli Laboratorio IMEM CNR, Parma

Ultra-High Vacuum Growth by Electron Beams Vacuum:Starting10 -8 PaOperating Pa Deposition Rate:0.5 ÷ 0.8 nm/min Substrates:Amorphous Quartz Si(100), Si(111) no native oxide removal

Characterization: Auger Electron Spectroscopy Layer Thickness, Very Low Contamination Grazing Incidence X-Ray Diffraction (SRS Daresbury, UK) Crystallographic Structure, Textures, Grain Sizes Grazing Incidence X-Ray Reflection (SRS Daresbury, UK) Thickness, Density, Interface Roughness Atomic Force Microscopy Morphology of Surfaces Transmission Electron Microscopy (Erlangen, DE) Morphology of Multilayers and Interfaces Conversion Electron Mössbauer Spectroscopy Composition and Dimensions of Interfaces Direction of Magnetization Magnetic Force Microscopy Magnetic Domains 1. Model System Co/Fe + Co MultilayersCo:5.0 ÷ 15.0 nm Fe0.5 ÷ 45.0 nm 2. RE-TM Systems Co/NdFeB/Co + Mo Nd 2 Fe 14 B arc evaporated 5[SmCo/Fe] + SmCo + AuSmCo 5 arc evaporated 3[SmCo/Co]SmCo 5 from 10[Sm0.3/Co0.5] Co/SmCo 5 /CoSmCo 5 co-evaporated Materials:

In-plane AGFM Hysteresis Loops (IMEM) Interaction-based deviation parameter M R = saturation remanence I IRM (H) = isothermal remanence I DCD (H) = dc demagnetization remanence M > 0 positive exchange coupling (ferromagnetic interaction) Model System: simple materials soft/hard ratio = 3

Pure Iron Interfaces H hf distribution: - main peak (35 T) narrow linewidth similar sublattices sharp Fe concentration gradient - small peak (32 T) broad linewidth a few Fe into Co Interface Analysis : CEMS

For Fe layer thickness up to 24 nm Strong Uniaxial Magnetic Anisotropy Hard Axis Low Hysteresis (M r /M s 0) Easy Axis High Squareness (M r /M s 1) Remanence ratio M r /M s vs the in-plane applied magnetic field angle 180° periodicity with |sin | behaviour Anisotropy constant K 1 ( ) 10 4 erg/cm 3 Co 5nm /Fe 2nm Magnetic Anisotropy AGFM Hysteresis Loops (IMEM)

Fe layer thickness: < 5 nm in-plane magnetization 5 24 nm out-of-plane ~10° > 24 nm out-of-plane ~40° No stray fields Stretched domains Stripe domains CEMSMFM

First Endeavors: RE-TM Hard Layer AGFM Hysteresis Loop (IMEM) Problems:- Uncoupled Phases - Low Coercive Field - Composition

Single Phase Magnetic Behaviour AGFM Hysteresis Loop (IMEM) Problems:- Stoichiometry - Reproducibility - Interdiffusion (GIXRR, CEMS) CEMS for 5[SmCo/Fe] + SmCo + Au

AGFM Hysteresis Loop (IMEM) Synchrotron Radiation GIXRD Pattern Single Phase Magnetic Behaviour Low Coercive Field: Nanostructuration SmCo 5 Stoichiometry

Future Activities TEM and HEED Analyses both in plane and in cross-section - Morphology, Defectivity - Continuity, Thickness of layers - Grain Sizes, Crystallographic textures - Phase Composition Mapping - Roughness, Interdiffusion, Dimensions of Interfaces Synchrotron Radiation GIXRD - Phase Composition - Grain Size, Textures - Kind and Intensities of Stresses - Depth-profiling: different X-ray incidence angles Ultra-High Vacuum Electron Beam Deposition of - RE-TM Films with High Coercive Fields - RE-TM/Fe Bilayers and Multilayers AFM and MFM observations - Morphology - Magnetic Domains CEMS - Composition and Dimensions of Interfaces - Direction of Magnetization