Combinational Circuits

Slides:



Advertisements
Similar presentations
Combinational Circuits
Advertisements

Princess Sumaya University
Princess Sumaya University
1 KU College of Engineering Elec 204: Digital Systems Design Lecture 9 Programmable Configurations Read Only Memory (ROM) – –a fixed array of AND gates.
التصميم المنطقي Second Course
Combinational Logic Chapter 4. Digital Circuits Introduction Logic circuits for digital systems may be combinational or sequential. A combinational.
Design of Arithmetic Circuits – Adders, Subtractors, BCD adders
Combinational Logic Chapter 4.
Combinational Logic Building Blocks
Combinational Logic1 DIGITAL LOGIC DESIGN by Dr. Fenghui Yao Tennessee State University Department of Computer Science Nashville, TN.
Chapter 3 Combinational Logic Design
Multiplexer MUX. 2 Multiplexer Multiplexer (Selector)  2 n data inputs,  n control inputs,  1 output  Used to connect 2 n points to a single point.
CS 105 Digital Logic Design
Mantıksal Tasarım – BBM231 M. Önder Efe
Combinational Circuits
Chapter 3 Decoder and Encoder Digital Logic Design III
Morgan Kaufmann Publishers
Combinational Logic Design
Overview of Chapter 4 °Design digital circuit from specification °Digital inputs and outputs known Need to determine logic that can transform data °Start.
Outline Analysis of Combinational Circuits Signed Number Arithmetic
Combinational and Sequential Logic Circuits.
Combinational Logic Chapter 4. Digital Circuits Combinational Circuits Logic circuits for digital system Combinational circuits the outputs are.
1 COMBINATIONAL LOGIC One or more digital signal inputs One or more digital signal outputs Outputs are only functions of current input values (ideal) plus.
Sahar Mosleh PageCalifornia State University San Marcos 1 Multiplexer, Decoder and Circuit Designing.
Chap 3. Chap 3. Combinational Logic Design. Chap Combinational Circuits l logic circuits for digital systems: combinational vs sequential l Combinational.
Chapter 3 Combinational Design Digital Logic Design III
Combinational Circuits
Combinational Logic. Outline 4.1 Introduction 4.2 Combinational Circuits 4.3 Analysis Procedure 4.4 Design Procedure 4.5 Binary Adder- Subtractor 4.6.
CS2100 Computer Organisation MSI Components (AY2015/6 Semester 1)
1 Chapter 4 Combinational Logic Logic circuits for digital systems may be combinational or sequential. A combinational circuit consists of input variables,
1 Combinational Logic Logic and Digital System Design - CS 303 Erkay Savaş Sabancı University.
Combinational Logic. Digital Circuits Introduction Logic circuits for digital systems may be combinational or sequential. A combinational circuit.
Digital System Ch4-1 Chapter 4 Combinational Logic Ping-Liang Lai ( 賴秉樑 ) Digital System 數位系統.
D IGITAL L OGIC D ESIGN I G ATE -L EVEL M INIMIZATION.
Boolean Algebra and Logic Gates 1 Computer Engineering (Logic Circuits) Lec. # 8 (Combinational Logic Circuit) Dr. Tamer Samy Gaafar Dept. of Computer.
Combinational Design, Part 3: Functional Blocks
Kuliah Rangkaian Digital Kuliah 6: Blok Pembangun Logika Kombinasional Teknik Komputer Universitas Gunadarma.
(Combinational Logic Circuit)
CHAPTER 4 Combinational Logic
Chapter Four Combinational Logic 1. C OMBINATIONAL C IRCUITS It consists of input variables, logic gates and output variables. Output is function of input.
CS 105 DIGITAL LOGIC DESIGN Chapter 4 Combinational Logic 1.
Chap 2. Combinational Logic Circuits
ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN Lecture 7 Dr. Shi Dept. of Electrical and Computer Engineering.
Chapter Four Combinational Logic 1. Discrete quantities of information are represented in digital systems by binary codes. A binary code of n bits is.
1 Chapter 4 Combinational Logic Logic circuits for digital systems may be combinational or sequential. A combinational circuit consists of input variables,
1 CS 151: Digital Design Chapter 3: Combinational Logic Design 3-1Design Procedure CS 151: Digital Design.
CHAPTER 2 Digital Combinational Logic/Arithmetic Circuits
Chapter Four Combinational Logic 1. C OMBINATIONAL C IRCUITS It consists of input variables, logic gates and output variables. Output is function of input.
1 Combinational Logic EE 208 – Logic Design Chapter 4 Sohaib Majzoub.
Combinational Circuit Design. Digital Circuits Combinational CircuitsSequential Circuits Output is determined by current values of inputs only. Output.
DIGITAL LOGIC DESIGN & COMPUTER ARCHTECTURE
Binary Parallel Adders
Logic Design (CE1111 ) Lecture 4 (Chapter 4) Combinational Logic Prepared by Dr. Lamiaa Elshenawy 1.
UNIT 8 COMBINATIONAL CIRCUIT DESIGN AND SIMULATION USING GATES
MSI Circuits.
Chapter 4 Combinational Logic. 4.1 Introduction   Logic circuits for digital systems may be combinational or sequential. A combinational circuit consists.
Presented by A. Maleki Fall Semester, 2010
Part 4 Combinational Logic.
Combinational Circuit Design
Computer Architecture CST 250
1 Chapter 4 Combinational Logic Logic circuits for digital systems may be combinational or sequential. A combinational circuit consists of input variables,
FUNCTION OF COMBINATIONAL LOGIC CIRCUIT
FIGURE 4.1 Block diagram of combinational circuit
INTRODUCTION TO LOGIC DESIGN Chapter 4 Combinational Logic
Ch 4. Combinational logic
Digital System Design Combinational Logic
Chapter-4 Combinational Logic
Digital System Design Combinational Logic
Presentation transcript:

Princess Sumaya University 4241 - Digital Logic Design 4241 - Digital Logic Design Chapter 4: Combinational Logic Dr. Bassam Kahhaleh

Combinational Circuits Output is function of input only i.e. no feedback When input changes, output may change (after a delay) Combinational Circuits n inputs m outputs • • 

Combinational Circuits Analysis Given a circuit, find out its function Function may be expressed as: Boolean function Truth table Design Given a desired function, determine its circuit ? ?

(A’+B’)(A’+C’)(B’+C’) Analysis Procedure Boolean Expression Approach ABC A+B+C AB'C'+A'BC'+A'B'C (A’+B’)(A’+C’)(B’+C’) AB+AC+BC F1=AB'C'+A'BC'+A'B'C+ABC F2=AB+AC+BC

Analysis Procedure Truth Table Approach A B C F1 F2 0 0 0 0 0 = 0 1

Analysis Procedure Truth Table Approach A B C F1 F2 0 0 0 0 0 1 1 0 0 0 0 0 0 1 = 0 = 1 1 1 1 0 1 1

Analysis Procedure Truth Table Approach A B C F1 F2 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 1 0 = 0 = 1 1 1 1 0 1 1

Analysis Procedure Truth Table Approach A B C F1 F2 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 1 0 0 1 1 = 0 = 1 1 0 1 1

Analysis Procedure Truth Table Approach A B C F1 F2 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 1 0 0 1 1 1 0 0 = 1 = 0 1 1 1 1 0 1

Analysis Procedure Truth Table Approach A B C F1 F2 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 1 0 0 1 1 1 0 0 1 0 1 = 1 = 0 1 0 1 1

Analysis Procedure Truth Table Approach A B C F1 F2 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 = 1 = 0 1 0 1 1

Analysis Procedure Truth Table Approach F1=AB'C'+A'BC'+A'B'C+ABC 0 0 0 0 0 1 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 = 1 1 1 1 1 1 B 1 A C B 1 A C F1=AB'C'+A'BC'+A'B'C+ABC F2=AB+AC+BC

? Design Procedure Given a problem statement: Example: Determine the number of inputs and outputs Derive the truth table Simplify the Boolean expression for each output Produce the required circuit Example: Design a circuit to convert a “BCD” code to “Excess 3” code ? 4-bits 0-9 values 4-bits Value+3

BCD-to-Excess 3 Converter Design Procedure BCD-to-Excess 3 Converter C 1 B A x D C 1 B A x D A B C D w x y z 0 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 x x x x 1 1 0 1 1 1 1 0 1 1 1 1 w = A+BC+BD x = B’C+B’D+BC’D’ C 1 B A x D C 1 B A x D y = C’D’+CD z = D’

BCD-to-Excess 3 Converter Design Procedure BCD-to-Excess 3 Converter A B C D w x y z 0 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 x x x x 1 1 0 1 1 1 1 0 1 1 1 1 w = A + B(C+D) y = (C+D)’ + CD x = B’(C+D) + B(C+D)’ z = D’

Seven-Segment Decoder a b c g e d f w x y z a b c d e f g 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 0 1 1 0 1 1 0 1 0 0 1 1 1 1 1 1 0 0 1 0 1 0 0 0 1 1 0 0 1 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 0 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 0 1 0 0 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 0 1 0 x x x x x x x 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 ? w x y z a b c d e f g BCD code y 1 x w z a = w + y + xz + x’z’ b = . . . c = . . . d = . . .

Binary Adder Half Adder Adds 1-bit plus 1-bit Produces Sum and Carry x y S C x + y ─── C S x y C S 0 0 0 0 0 1 0 1 1 0 1 1 1 0 x y S C

Binary Adder Full Adder Adds 1-bit plus 1-bit plus 1-bit Produces Sum and Carry FA x y z S C x + y + z ─── C S y 1 x z x y z C S 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 1 1 0 1 0 0 1 0 1 1 1 0 1 1 1 1 1 S = xy'z'+x'yz'+x'y'z+xyz = x  y  z y 1 x z C = xy + xz + yz

Binary Adder Full Adder x S S y x y C z z C S = xy'z'+x'yz'+x'y'z+xyz = x  y  z C = xy + xz + yz x y z S C S C x y z

Binary Adder Full Adder HA HA x y z S C x y z S C

Carry Propagate Addition Binary Adder Binary Adder x3x2x1x0 y3y2y1y0 S3S2S1S0 C0 Cy c3 c2 c1 . + x3 x2 x1 x0 + y3 y2 y1 y0 ──────── Cy S3 S2 S1 S0 Carry Propagate Addition x3 x2 x1 x0 y3 y2 y1 y0 FA FA FA FA C4 C3 C2 C1 S3 S2 S1 S0

Binary Adder Carry Propagate Adder CPA CPA x7 x6 x5 x4 x3 x2 x1 x0 y7 y6 y5 y4 y3 y2 y1 y0 CPA A3 A2 A1 A0 B3 B2 B1 B0 S3 S2 S1 S0 C0 Cy CPA A3 A2 A1 A0 B3 B2 B1 B0 Cy C0 S3 S2 S1 S0 S7 S6 S5 S4 S3 S2 S1 S0

Operands and Result: 0 to 9 BCD Adder 4-bits plus 4-bits Operands and Result: 0 to 9 + x3 x2 x1 x0 + y3 y2 y1 y0 ──────── Cy S3 S2 S1 S0 X +Y x3 x2 x1 x0 y3 y2 y1 y0 Sum Cy S3 S2 S1 S0 0 + 0 0 0 0 0 = 0 0 + 1 0 0 0 0 0 0 0 1 = 1 0 + 2 0 0 0 0 0 0 1 0 = 2 0 + 9 0 0 0 0 1 0 0 1 = 9 1 + 0 0 0 0 1 0 0 0 0 = 1 1 + 1 0 0 0 1 = 2 0 0 1 0 1 + 8 0 0 0 1 1 0 0 0 = 9 1 0 0 1 1 + 9 0 0 0 1 1 0 0 1 = A 1 0 1 0 Invalid Code 2 + 0 0 0 1 0 0 0 0 0 = 2 9 + 9 1 0 0 1 = 12 1 0 0 1 0 Wrong BCD Value 0001 1000

BCD Adder  + 6 X +Y x3 x2 x1 x0 y3 y2 y1 y0 Sum Cy S3 S2 S1 S0 Required BCD Output Value 9 + 0 1 0 0 1 0 0 0 0 = 9 0 0 0 0 1 0 0 1 9 + 1 0 0 0 1 = 10 1 0 1 0 0 0 0 1 0 0 0 0 = 16 9 + 2 0 0 1 0 = 11 1 0 1 1 0 0 0 1 0 0 0 1 = 17 9 + 3 0 0 1 1 = 12 1 1 0 0 0 0 0 1 0 0 1 0 = 18 9 + 4 0 1 0 0 = 13 1 1 0 1 0 0 0 1 0 0 1 1 = 19 9 + 5 0 1 0 1 = 14 1 1 1 0 0 0 0 1 0 1 0 0 = 20 9 + 6 0 1 1 0 = 15 1 1 1 1 0 0 0 1 0 1 0 1 = 21 9 + 7 0 1 1 1 1 0 0 0 1 0 1 1 0 = 22 9 + 8 1 0 0 0 0 0 0 1 0 1 1 1 = 23 9 + 9 0 0 0 1 1 0 0 0 = 24  + 6

Correct Binary Adder’s Output (+6) BCD Adder Correct Binary Adder’s Output (+6) If the result is between ‘A’ and ‘F’ If Cy = 1 S3 S2 S1 S0 Err 0 0 0 0 1 0 0 0 1 0 0 1 1 0 1 0 1 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 S1 S2 S3 1 S0 Err = S3 S2 + S3 S1

BCD Adder Err

Use 2’s complement with binary adder Binary Subtractor Use 2’s complement with binary adder x – y = x + (-y) = x + y’ + 1

Binary Adder/Subtractor M: Control Signal (Mode) M=0  F = x + y M=1  F = x – y

Unsigned Binary Numbers Overflow Unsigned Binary Numbers 2’s Complement Numbers FA x3 x2 x1 x0 y3 y2 y1 y0 S3 S2 S1 S0 C4 C3 C2 C1 Carry FA x3 x2 x1 x0 y3 y2 y1 y0 S3 S2 S1 S0 C4 C3 C2 C1 Overflow

Compare 4-bit number to 4-bit number Magnitude Comparator Compare 4-bit number to 4-bit number 3 Outputs: < , = , > Expandable to more number of bits A3A2A1A0 B3B2B1B0 Magnitude Comparator A<B A=B A>B

Magnitude Comparator

Magnitude Comparator Magnitude Comparator Magnitude Comparator x7 x6 x5 x4 x3 x2 x1 x0 y7 y6 y5 y4 y3 y2 y1 y0 Magnitude Comparator A3 A2 A1 A0 B3 B2 B1 B0 A<B A=B A>B I(A>B) I(A=B) I(A<B) Magnitude Comparator A3 A2 A1 A0 B3 B2 B1 B0 1 I(A>B) I(A=B) I(A<B) A<B A=B A>B A<B A=B A>B

Only one lamp will turn on Decoders Extract “Information” from the code Binary Decoder Example: 2-bit Binary Number Only one lamp will turn on 1 2 3 Binary Decoder x1 x0 1

Decoders 2-to-4 Line Decoder Binary Decoder I1 I0 y3 y2 y1 y0 I1 I0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 1 0 0 1 1 1 0 0 0

Decoders 3-to-8 Line Decoder Y7 Y6 Y5 Binary Decoder Y4 Y3 Y2 I2 Y1 I1

Decoders “Enable” Control Binary Decoder I1 I0 E Y3 Y2 Y1 Y0 E I1 I0 x x 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 1 0 0 1 1 1 0 0 0

Decoders Expansion I2 I1 I0 I2 I1 I0 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 Binary Decoder I0 I1 E Y3 Y2 Y1 Y0 Y7 Y6 Y5 Y4

Active-High / Active-Low Decoders Active-High / Active-Low I1 I0 Y3 Y2 Y1 Y0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 1 0 0 1 1 1 0 0 0 I1 I0 Y3 Y2 Y1 Y0 0 0 1 1 1 0 0 1 1 1 0 1 1 0 1 0 1 1 1 1 0 1 1 1 Binary Decoder I1 I0 Y3 Y2 Y1 Y0 Binary Decoder I1 I0 Y3 Y2 Y1 Y0

Implementation Using Decoders Each output is a minterm All minterms are produced Sum the required minterms Example: Full Adder S(x, y, z) = ∑(1, 2, 4, 7) C(x, y, z) = ∑(3, 5, 6, 7) I2 I1 I0 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 Binary Decoder x y z S C

Implementation Using Decoders Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 Binary Decoder x y z S C I2 I1 I0 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 Binary Decoder x y z S C

Only one switch should be activated at a time Encoders Put “Information” into code Binary Encoder Example: 4-to-2 Binary Encoder Only one switch should be activated at a time 1 2 3 Binary Encoder y1 y0 x1 x2 x3 x3 x2 x1 y1 y0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 1 1

Octal-to-Binary Encoder (8-to-3) Encoders Octal-to-Binary Encoder (8-to-3) Binary Encoder Y2 Y1 Y0 I7 I6 I5 I4 I3 I2 I1 I0 I7 I6 I5 I4 I3 I2 I1 I0 Y2 Y1 Y0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 1 1 1

4-Input Priority Encoder Priority Encoders 4-Input Priority Encoder Priority Encoder V Y1 Y0 I3 I2 I1 I0 I3 I2 I1 I0 Y1 Y0 V 0 0 0 0 0 0 0 0 0 1 1 0 0 1 x 0 1 0 1 x x 1 0 1 x x x 1 1 Y1 I1 1 I2 I3 I0

Encoder / Decoder Pairs Binary Encoder Binary Decoder Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 7 7 I7 I6 I5 I4 I3 I2 I1 I0 6 6 5 5 Y2 Y1 Y0 I2 I1 I0 4 4 3 3 2 2 1 1

Multiplexers S1 S0 Y 0 0 I0 0 1 I1 1 0 I2 1 1 I3 MUX Y I0 I1 I2 I3 0 0 I0 0 1 I1 1 0 I2 1 1 I3 MUX Y I0 I1 I2 I3 S1 S0

Multiplexers 2-to-1 MUX 4-to-1 MUX I0 MUX I1 Y S I0 I1 MUX I2 I3 Y S1 S0

Multiplexers Quad 2-to-1 MUX x3 y3 x2 y2 x1 y1 x0 y0 I0 MUX I1 Y S S S E Y3 Y2 Y1 Y0 B3 B2 B1 B0 S

Multiplexers Quad 2-to-1 MUX A3 A2 A1 A0 MUX Y3 Y2 Y1 Y0 B3 B2 B1 B0 S E Y3 Y2 Y1 Y0 B3 B2 B1 B0 Extra Buffers

Implementation Using Multiplexers Example F(x, y) = ∑(0, 1, 3) x y F 0 0 1 0 1 1 0 1 1 MUX Y I0 I1 I2 I3 S1 S0 1 F x y

Implementation Using Multiplexers Example F(x, y, z) = ∑(1, 2, 6, 7) MUX Y I0 I1 I2 I3 I4 I5 I6 I7 S2 S1 S0 1 x y z F 0 0 0 0 0 1 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 F x y z

Implementation Using Multiplexers Example F(x, y, z) = ∑(1, 2, 6, 7) x y z F 0 0 0 0 0 1 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 MUX Y I0 I1 I2 I3 S1 S0 z F = z F z F = z 1 F = 0 x y F = 1

Implementation Using Multiplexers Example F(A, B, C, D) = ∑(1, 3, 4, 11, 12, 13, 14, 15) A B C D F 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 MUX Y I0 I1 I2 I3 I4 I5 I6 I7 S2 S1 S0 D F = D D F = D D F = D F F = 0 D F = 0 1 F = D 1 F = 1 F = 1 A B C

Multiplexer Expansion 8-to-1 MUX using Dual 4-to-1 MUX Y I0 I1 I2 I3 I4 I5 I6 I7 S2 S1 S0 MUX Y I0 I1 I2 I3 S1 S0 MUX Y I0 I1 S MUX Y I0 I1 I2 I3 S1 S0 1 0 0

DeMultiplexers DeMUX I Y3 Y2 Y1 Y0 S1 S0 S1 S0 Y3 Y2 Y1 Y0 0 0 I 0 1 0 0 I 0 1 1 0 1 1

Multiplexer / DeMultiplexer Pairs MUX DeMUX Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 7 7 I7 I6 I5 I4 I3 I2 I1 I0 6 6 5 5 4 4 Y I 3 3 2 2 1 1 S2 S1 S0 S2 S1 S0 Synchronize x2 x1 x0 y2 y1 y0

DeMultiplexers / Decoders DeMUX I Y3 Y2 Y1 Y0 S1 S0 Binary Decoder I1 I0 E Y3 Y2 Y1 Y0 E I1 I0 Y3 Y2 Y1 Y0 x x 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 1 0 0 1 1 1 0 0 0 S1 S0 Y3 Y2 Y1 Y0 0 0 I 0 1 1 0 1 1

Three-State Gates Tri-State Buffer Tri-State Inverter C A Y 0 x Hi-Z 1 0 1 1 1 A Y C A Y C

Three-State Gates C D Y 0 0 Hi-Z 0 1 B 1 0 A 1 1 ? A Y C B Not Allowed 0 0 Hi-Z 0 1 B 1 0 A 1 1 ? A Y C B Not Allowed D A C B A if C = 1 B if C = 0 Y=

Three-State Gates I3 I2 Y I1 I0 Y3 Binary Decoder Y2 S1 I1 Y1 I0 Y0 E

Homework Mano Chapter 4 4-2 4-3 4-5 4-11 4-13 4-27 4-28 4-31 4-32 4-33 4-35

Homework Mano 4-2 Obtain the simplified Boolean expressions for output F and G in terms of the input variables in the circuit:

Homework 4-3 For the circuit shown in the “Quad 2-to-1 MUX”: (a) Write the Boolean functions for the four outputs in terms of the input variables (b) If the circuit is listed in a truth table, how many rows and columns would there be in the truth table? 4-5 Design a combinational circuit with three inputs, x, y, and z, and three outputs, A, B, and C. When the binary input is 0, 1, 2, or 3, the binary output is one greater than the input. When the binary input is 4, 5, 6, or 7, the binary output is one less than the input.

Homework 4-11 Design a 4-bit combinational circuit incrementer. (A circuit that adds one to a 4-bit binary number.) The circuit can be designed using four half-adders. 4-13 The adder-subtractor circuit has the following values for mode input M and data inputs A and B. In each case, determine the values of the four SUM outputs and the carry C. M A B (a) 0 0111 0110 (b) 0 1000 1001 (c) 1 1100 1000 (d) 1 0101 1010 (e) 1 0000 0001

Homework 4-27 A combinational circuit is specified by the following three Boolean functions: F1(A, B, C) = ∑(2, 4, 7) F2(A, B, C) = ∑(0, 3) F3(A, B, C) = ∑(0, 2, 3, 4, 7) Implement the circuit with a decoder constructed with NAND gates and NAND or AND gates connected to the decoder outputs. Use a block diagram for the decoder. Minimize the number of inputs in the external gates.

Homework 4-28 A combinational circuit is defined by the following three Boolean functions: F1 = x’ y’ z’ + x z F2 = x y’ z’ + x’ y F3 = x’ y’ z + x y Design the circuit with a decoder and external gates. 4-31 Construct a 16  1 multiplexer with two 8  1 and one 2  1 multiplexers. Use block diagrams. 4-32 Implement the following Boolean function with a multiplexer: F(A, B, C, D) = ∑(0, 1, 3, 4, 8, 9, 15)

Homework 4-33 Implement a full adder with two 4  1 multiplexers: 4-35 Implement the following Boolean function with a 4  1 multiplexer and external gates. Connect inputs A and B to the selection lines. The input requirements for the four data lines will be a function of variables C and D. These values are obtained by expressing F as a function of C and D for each of the four cases when AB = 00, 01, 10, and 11. These functions may have to be implemented with external gates. F(A, B, C, D) = ∑(1, 3, 4, 11, 12, 13, 14, 15)