Dynamics of Quantum- Degenerate Gases at Finite Temperature Brian Jackson Inauguration meeting and Lev Pitaevskii’s Birthday: Trento, March 14-15 University.

Slides:



Advertisements
Similar presentations
Creating new states of matter:
Advertisements

Trapped ultracold atoms: Bosons Bose-Einstein condensation of a dilute bosonic gas Probe of superfluidity: vortices.
DYNAMICS OF TRAPPED BOSE AND FERMI GASES
John E. Thomas Students: Joe Kinast, Bason Clancy,
DYNAMICS OF TRAPPED BOSE AND FERMI GASES Sandro Stringari University of Trento IHP Paris, June 2007 CNR-INFM Lecture 2.
Rotations and quantized vortices in Bose superfluids
Fermi-Bose and Bose-Bose quantum degenerate K-Rb mixtures Massimo Inguscio Università di Firenze.
Experiments with ultracold atomic gases Andrey Turlapov Institute of Applied Physics, Russian Academy of Sciences Nizhniy Novgorod.
Coherence, Dynamics, Transport and Phase Transition of Cold Atoms Wu-Ming Liu (刘伍明) (Institute of Physics, Chinese Academy of Sciences)
Ultracold Alkali Metal Atoms and Dimers: A Quantum Paradise Paul S. Julienne Atomic Physics Division, NIST Joint Quantum Institute, NIST/U. Md 62 nd International.
Sound velocity and multibranch Bogoliubov - Anderson modes of a Fermi superfluid along the BEC-BCS crossover Tarun Kanti Ghosh Okayama University, Japan.
Anderson localization in BECs
Nonequilibrium dynamics of bosons in optical lattices $$ NSF, AFOSR MURI, DARPA, RFBR Harvard-MIT Eugene Demler Harvard University.
Universal Spin Transport in Strongly Interacting Fermi Gases Ariel Sommer Mark Ku, Giacomo Roati, Martin Zwierlein MIT INT Experimental Symposium May 19,
Ultracold Fermi gases : the BEC-BCS crossover Roland Combescot Laboratoire de Physique Statistique, Ecole Normale Supérieure, Paris, France.
SUPERFLUIDTY OF ULTRACOLD ATOMIC GASES
JILA June ‘95. BEC in external Potetnial V. Bagnato et al. Phys.Rev. 35, p4354 (1987) free space potential.
Stability of a Fermi Gas with Three Spin States The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites Yi Zhang John Huckans.
New physics with polar molecules Eugene Demler Harvard University Outline: Measurements of molecular wavefunctions using noise correlations Quantum critical.
Aurel Bulgac University of Washington, Seattle, WA Collaborators: Yuan Lung (Alan) Luo (Seattle) Piotr Magierski (Warsaw/Seattle) Piotr Magierski (Warsaw/Seattle)
Qiang Gu (顾 强) Cold atoms in the synthetic magnetic field Department of Physics, University of Science and Technology Beijing (北京科技大学 物理系) KITPC, Beijing,
Dynamics of Bose-Einstein Condensates in Trapped Atomic Gases at Finite Temperature Eugene Zaremba Queen’s University, Kingston, Ontario, Canada Financial.
University of Trento INFM. BOSE-EINSTEIN CONDENSATION IN TRENTO SUPERFLUIDITY IN TRAPPED GASES University of Trento Inauguration meeting, Trento
Bose-Einstein Condensate Fundaments, Excitation and Turbulence Vanderlei Salvador Bagnato Instituto de Física de São Carlos – Universidade de São Paulo.
Bose-Einstein Condensate Fundaments, Excitation and Turbulence Vanderlei Salvador Bagnato Instituto de Física de São Carlos – Universidade de São Paulo.
Universal thermodynamics of a strongly interacting Fermi gas Hui Hu 1,2, Peter D. Drummond 2, and Xia-Ji Liu 2 1.Physics Department, Renmin University.
Theory of interacting Bose and Fermi gases in traps
System and definitions In harmonic trap (ideal): er.
T. Koch, T. Lahaye, B. Fröhlich, J. Metz, M. Fattori, A. Griesmaier, S. Giovanazzi and T. Pfau 5. Physikalisches Institut, Universität Stuttgart Assisi.
Ultracold Fermi gases University of Trento BEC Meeting, Trento, 2-3 May 2006 INFM-CNR Sandro Stringari.
Experiments with ultracold atomic gases
VARIATIONAL APPROACH FOR THE TWO-DIMENSIONAL TRAPPED BOSE GAS L. Pricoupenko Trento, June 2003 LABORATOIRE DE PHYSIQUE THEORIQUE DES LIQUIDES Université.
Strongly interacting scale-free matter in cold atoms Yusuke Nishida March 12, MIT Faculty Lunch.
Experiments with Trapped Potassium Atoms Robert Brecha University of Dayton.
Three-body recombination at vanishing scattering lengths in ultracold atoms Lev Khaykovich Physics Department, Bar-Ilan University, Ramat Gan, Israel.
Few-body physics with ultracold fermions Selim Jochim Physikalisches Institut Universität Heidelberg.
Quantum Monte Carlo methods applied to ultracold gases Stefano Giorgini Istituto Nazionale per la Fisica della Materia Research and Development Center.
Collective excitations in a dipolar Bose-Einstein Condensate Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France Former PhD.
Critical stability of a dipolar Bose-Einstein condensate: Bright and vortex solitons Sadhan K. Adhikari IFT - Instituto de Física Teórica UNESP - Universidade.
Superfluid dynamics of BEC in a periodic potential Augusto Smerzi INFM-BEC & Department of Physics, Trento LANL, Theoretical Division, Los Alamos.
Quantum Technologies Conference, Toruń 1 The project „Photonic implementations of quantum-enhanced technologies” is realized within the TEAM.
Physics and Astronomy Dept. Kevin Strecker, Andrew Truscott, Guthrie Partridge, and Randy Hulet Observation of Fermi Pressure in Trapped Atoms: The Atomic.
Theory of interacting Bose and Fermi gases in traps Sandro Stringari University of Trento Crete, July 2007 Summer School on Bose-Einstein Condensation.
Lecture III Trapped gases in the classical regime Bilbao 2004.
Lecture IV Bose-Einstein condensate Superfluidity New trends.
Superfluidity in atomic Fermi gases Luciano Viverit University of Milan and CRS-BEC INFM Trento CRS-BEC inauguration meeting and Celebration of Lev Pitaevskii’s.
Stability and collapse of a trapped degenerate dipolar Bose or Fermi gas Sadhan K. Adhikari IFT - Instituto de Física Teórica UNESP - Universidade Estadual.
Experiments with an Ultracold Three-Component Fermi Gas The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites John Huckans.
Experimental determination of Universal Thermodynamic Functions for a Unitary Fermi Gas Takashi Mukaiyama Japan Science Technology Agency, ERATO University.
Atoms in optical lattices and the Quantum Hall effect Anders S. Sørensen Niels Bohr Institute, Copenhagen.
Pairing Gaps in the BEC-BCS crossover regime 15/06/2005, Strong correlations in Fermi systems Cheng Chin JFI and Physics, University of Chicago Exp.: Rudolf.
Condensed matter physics in dilute atomic gases S. K. Yip Academia Sinica.
Optically Trapped Low-Dimensional Bose Gases in Random Environment
D. Jin JILA, NIST and the University of Colorado $ NIST, NSF Using a Fermi gas to create Bose-Einstein condensates.
Dieter Jaksch, Irreversible loading of optical lattices Rotation of cold atoms University of Oxford Christopher Foot.
An atomic Fermi gas near a p-wave Feshbach resonance
Molecules and Cooper pairs in Ultracold Gases Krynica 2005 Krzysztof Góral Marzena Szymanska Thorsten Köhler Joshua Milstein Keith Burnett.
Precision collective excitation measurements in the BEC-BCS crossover regime 15/06/2005, Strong correlations in Fermi systems A. Altmeyer 1, S. Riedl 12,
- Founded by INFM (Istituto Nazionale per la Fisica della Materia) June Hosted by University of Trento (Physics Department) - Director: Sandro Stringari.
Dipolar relaxation in a Chromium Bose Einstein Condensate Benjamin Pasquiou Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France.
Soliton-core filling in superfluid Fermi gases with spin imbalance Collaboration with: G. Lombardi, S.N. Klimin & J. Tempere Wout Van Alphen May 18, 2016.
Measuring Entropy and Quantum Viscosity in a Strongly Interacting Atomic Fermi Gas Support: ARO NSF DOE NASA* John E. Thomas Ken O’Hara* Mike Gehm* Stephen.
Functional Integration in many-body systems: application to ultracold gases Klaus Ziegler, Institut für Physik, Universität Augsburg in collaboration with.
Agenda Brief overview of dilute ultra-cold gases
Superfluidity of ultracold
strongly interacting fermions: from spin mixtures to mixed species
Ehud Altman Anatoli Polkovnikov Bertrand Halperin Mikhail Lukin
One-Dimensional Bose Gases with N-Body Attractive Interactions
Large Amplitude Superfluid Dynamics of a Unitary Fermi Gas
Department of Physics, Fudan University, Shanghai, China
Presentation transcript:

Dynamics of Quantum- Degenerate Gases at Finite Temperature Brian Jackson Inauguration meeting and Lev Pitaevskii’s Birthday: Trento, March University of Trento, and INFM-BEC

In collaboration with: Eugene Zaremba (Queen’s University, Canada) Allan Griffin (University of Toronto, Canada) Jamie Williams (NIST, USA) Tetsuro Nikuni (Tokyo Univ. of Science, Japan) In Trento: Sandro Stringari Lev Pitaevskii Luciano Viverit

Bose-Einstein condensation: Cloud density vs. temperature Decreasing Temperature

Bose-Einstein condensation: Condensate fraction vs. temperature J. R. Ensher et al., Phys. Rev. Lett. 77, 4984 (1996)

Outline Bose-Einstein condensation at finite T collective modes ZNG theory and numerical methods applications: scissors, quadrupole, and transverse breathing modes Normal Fermi gases Collective modes in the unitarity limit Summary

Collective modes: zero T Condensate confined in magnetic trap, which can be approximated with the harmonic form:

Collective modes: zero T Change trap frequency: condensate undergoes undamped collective oscillations

Collective modes: zero T Gross-Pitaevskii equation: Normalization condition: a: s-wave scattering length m: atomic mass

Collective modes: finite T Finite temperature: Condensate now coexists with a noncondensed thermal cloud

Collective modes: finite T Change trap frequency: condensate now oscillates in the presence of the thermal cloud

Collective modes: finite T Condensate now pushes on thermal cloud- the response of which leads to a damping and frequency shift of the mode But!

Collective modes: finite T Change in trap frequency also excites collective oscillations of the thermal cloud, which can couple back to the condensate motion And

ZNG Formalism Bose broken symmetry: condensate wavefunction: condensate density: thermal cloud densities: ‘anomalous’ ‘normal’ Dynamical Equations E. Zaremba, T. Nikuni, and A. Griffin, JLTP 116, 277 (1999)

ZNG Formalism Generalized Gross-Pitaevskii equation: E. Zaremba, T. Nikuni, and A. Griffin, JLTP 116, 277 (1999) Popov approximation:

ZNG Formalism Boltzmann kinetic equation: E. Zaremba, T. Nikuni, and A. Griffin, JLTP 116, 277 (1999) Hartree-Fock excitations: moving in effective potential: phase space density: (semiclassical approx.)

ZNG Formalism E. Zaremba, T. Nikuni, and A. Griffin, JLTP 116, 277 (1999) Boltzmann kinetic equation:

ZNG Formalism E. Zaremba, T. Nikuni, and A. Griffin, JLTP 116, 277 (1999) Coupling: mean field coupling

ZNG Formalism E. Zaremba, T. Nikuni, and A. Griffin, JLTP 116, 277 (1999) Coupling: Collisional coupling (atom transfer)

Numerical Methods B. Jackson and E. Zaremba, PRA 66, (2002). Follow system dynamics in discrete time steps: 1.Solve GP equation for  with FFT split-operator method 2.Evolve Kinetic equation using N-body simulations: Collisionless dynamics – integrate Newton’s equations using a symplectic algorithm Collisions – included using Monte Carlo sampling 3.Include mean field coupling between condensate and thermal cloud

Applications Scissors modes (Oxford): O. M. Maragò et al., PRL 86, 3938 (2001). Quadrupole modes (JILA): D. S. Jin et al., PRL 78, 764 (1997). Transverse breathing mode (ENS): F. Chevy et al., PRL 88, (2002). Numerical simulations useful in understanding the following experiments, that studied collective modes at finite-T:

Scissors modes Excited by sudden rotation of the trap through a small angle at t = 0 Signature of superfluidity! D. Guéry-Odelin and S. Stringari, PRL 83, 4452 (1999) O. M. Maragò et al., PRL 84, 2056 (1999)

Scissors modes condensate frequency: with irrotational velocity field: thermal cloud frequencies:

Experiment: O. Maragò et al., PRL 86, 3938 (2001). Theory: B. Jackson and E. Zaremba., PRL 87, (2001).

m = 0 JILA experiment Experiment: D. S. Jin et al., PRL 78, 764 (1997). condensate: thermal cloud: Theory: B. Jackson and E. Zaremba., PRL 88, (2002).

JILA experiment Excitation scheme: modulate trap potential m = 0

condensate thermal cloud  = 1.95   T ´ = 0.8

Drive frequencies Solid symbols – maximum condensate amplitude

ENS experiment m = 0 mode in an elongated trap Excitation scheme: excites oscillations in both condensate and thermal cloud Theory: B. Jackson and E. Zaremba., PRL 89, (2002). Experiment: F. Chevy et al., PRL 88, (2002).

ENS experiment Condensate oscillates at Thermal cloud oscillates at Condensate and thermal cloud oscillate together with same amplitude at frequency m = 0 mode in an elongated trap Theory: B. Jackson and E. Zaremba., PRL 89, (2002). Experiment: F. Chevy et al., PRL 88, (2002).

condensate thermal cloud ‘tophat’ excitation scheme collisions

experiment theory

condensate thermal cloud excite condensate only collisions

Fermi gases Motivation: Experiment by O’Hara et al., Science 298, 2179 (2002). Cool 6 Li atoms (50-50 mixture of 2 hyperfine states) to quantum degeneracy T « T F Static B-field tuned close to Feshbach resonance, a~ a 0 Observe anisotropic expansion of the cloud

Fermi gases Motivation: Experiment by O’Hara et al., Science 298, 2179 (2002). Cool 6 Li atoms (50-50 mixture of 2 hyperfine states) to quantum degeneracy T « T F Static B-field tuned close to Feshbach resonance, a~ a 0 Observe anisotropic expansion of the cloud Hydrodynamic behaviour, implying either:  Gas is superfluid (BCS or BEC)  Gas is normal, but collisions are frequent 

Feshbach resonance: Fermi gases Jochim et al., PRL 89, (2002). = relative velocity of colliding atoms Collision cross- section:

Feshbach resonance: Fermi gases Jochim et al., PRL 89, (2002). = relative velocity of colliding atoms Low k limit:

Fermi gases Feshbach resonance: Jochim et al., PRL 89, (2002). = relative velocity of colliding atoms Unitarity limit:

Quadrupole collective modes: In-phase modes: L. Vichi, JLTP 121, 177 (2000)

Taking moments:

collisionless limit: ωτ » 1 hydrodynamic limit: ωτ « 1 intermediate regime: ωτ ~ 1 Solve set of equations for Example: transverse breathing mode in a cigar-shaped trap

Low k limit:

Unitarity limit: N=1.5  10 5 =0.035

Summary Bose condensates at finite temperatures:  studied damping and frequency shifts of various collective modes  Comparison with experiment shows good to excellent agreement, illustrating utility of scheme Normal Fermi gases:  relaxation times of collective modes  simulations  rotation, optical lattices, superfluid component…