Copyright © Cengage Learning. All rights reserved. Conic Sections.

Slides:



Advertisements
Similar presentations
Parabolas Warm Up Lesson Presentation Lesson Quiz
Advertisements

The following are several definitions necessary for the understanding of parabolas. 1.) Parabola - A parabola is the set of all points that are equidistant.
Conic Sections Parabola.
Copyright © Cengage Learning. All rights reserved.
Parabola.
Copyright © Cengage Learning. All rights reserved. Conic Sections.
Notes Over 10.2 Graphing an Equation of a Parabola Standard Equation of a Parabola (Vertex at Origin) focus directrix.
College Algebra Fifth Edition James Stewart Lothar Redlin Saleem Watson.
Copyright © 2007 Pearson Education, Inc. Slide 6-2 Chapter 6: Analytic Geometry 6.1Circles and Parabolas 6.2Ellipses and Hyperbolas 6.3Summary of the.
Copyright © Cengage Learning. All rights reserved.
Conics, Parametric Equations, and Polar Coordinates 10 Copyright © Cengage Learning. All rights reserved.
Section 9.3 The Parabola.
Math 143 Section 7.3 Parabolas. A parabola is a set of points in a plane that are equidistant from a fixed line, the directrix, and a fixed point, the.
Unit 5 Conics... The parabola is the locus of all points in a plane that are the same distance from a line in the plane, the directrix, as from a fixed.
6.1 Introduction The General Quadratic Equation in x and y has the form: Where A, B, C, D, E, F are constants. The graphs of these equations are called.
8.2 Graph and Write Equations of Parabolas
EXAMPLE 1 Graph an equation of a parabola SOLUTION STEP 1 Rewrite the equation in standard form x = – Write original equation Graph x = – y.
Chapter Parabolas. Objectives Write the standard equation of a parabola and its axis of symmetry. Graph a parabola and identify its focus, directrix,
Graph an equation of a parabola
Parabolas Definitions Parabola – set of all points equidistant from a fixed line (directrix) and a fixed point (focus) Vertex – midpoint of segment from.
INTRO TO CONIC SECTIONS. IT ALL DEPENDS ON HOW YOU SLICE IT! Start with a cone:
Copyright © Cengage Learning. All rights reserved. 1.8 Coordinate Geometry.
College Algebra Fifth Edition
Conics, Parametric Equations, and Polar Coordinates
Copyright © Cengage Learning. All rights reserved. Conic Sections.
Splash Screen. Lesson Menu Five–Minute Check (over Chapter 6) Then/Now New Vocabulary Key Concept:Standard Form of Equations for Parabolas Example 1:Determine.
OHHS Pre-Calculus Mr. J. Focht
Copyright © Cengage Learning. All rights reserved.
Chapter 8 Analytical Geometry
Precalculus Chapter Analytic Geometry 10 Hyperbolas 10.4.
Copyright © 2011 Pearson Education, Inc. Slide
ALGEBRA 2 Write an equation for a graph that is the set of all points in the plane that are equidistant from point F(0, 1) and the line y = –1. You need.
1 © 2010 Pearson Education, Inc. All rights reserved © 2010 Pearson Education, Inc. All rights reserved Chapter 9 Analytic Geometry.
Section 10.1 Parabolas Objectives: To define parabolas geometrically.
10-5 Parabolas Warm Up Lesson Presentation Lesson Quiz Holt Algebra 2.
PARABOLAS GOAL: GRAPH AND EQUATIONS OF PARABOLAS.
Conics can be formed by the intersection
TH EDITION LIAL HORNSBY SCHNEIDER COLLEGE ALGEBRA.
Copyright © 2011 Pearson Education, Inc. The Parabola Section 7.1 The Conic Sections.
1 Copyright © Cengage Learning. All rights reserved. 3 Functions and Graphs 3.6 Quadratic Functions.
Copyright © Cengage Learning. All rights reserved. 10 Parametric Equations and Polar Coordinates.
Section 9.3 The Parabola. Finally, something familiar! The parabola is oft discussed in MTH 112, as it is the graph of a quadratic function: Does look.
1 © 2010 Pearson Education, Inc. All rights reserved © 2010 Pearson Education, Inc. All rights reserved Chapter 10 Conic Sections.
PARAMETRIC EQUATIONS AND POLAR COORDINATES Conic Sections In this section, we will learn: How to derive standard equations for conic sections.
Honors Precalculus: Do Now Take the following shape (called a double napped cone -it is hollow). Draw it on your paper. Now take a plane and intersect.
Warm up Find the coordinates of the center, the foci, vertices and the equation of the asymptotes for.
The Parabola. Definition of a Parabola A Parabola is the set of all points in a plane that are equidistant from a fixed line (the directrix) and a fixed.
Slide Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley.
Copyright © Cengage Learning. All rights reserved. 4 Quadratic Functions.
Introduction to Conic Sections Conic sections will be defined in two different ways in this unit. 1.The set of points formed by the intersection of a plane.
Warm UpNO CALCULATOR 1) Determine the equation for the graph shown. 2)Convert the equation from polar to rectangular. r = 3cosθ + 2sin θ 3)Convert the.
INTRO TO CONIC SECTIONS. IT ALL DEPENDS ON HOW YOU SLICE IT! Start with a cone:
10.1 Circles and Parabolas Conic Sections
Copyright © Cengage Learning. All rights reserved.
Vertex Form of Quadratics
Unit 2: Day 6 Continue  .
Day 137 – Equation of a parabola 2
Parabolas Warm Up Lesson Presentation Lesson Quiz
Parabolas 12-5 Warm Up Lesson Presentation Lesson Quiz
Section 9.3 The Parabola.
College Algebra Sixth Edition
Chapter 6: Analytic Geometry
College Algebra Fifth Edition
Geometric Definition of a Hyperbola
Objectives Write the standard equation of a parabola and its axis of symmetry. Graph a parabola and identify its focus, directrix, and axis of symmetry.
Section 9.3 The Parabola.
Section 9.3 The Parabola.
Intro to Conic Sections
Parabolas.
Presentation transcript:

Copyright © Cengage Learning. All rights reserved. Conic Sections

Copyright © Cengage Learning. All rights reserved Parabolas

3 Objectives ► Geometric Definition of a Parabola ► Equations and Graphs of Parabolas ► Applications

4 Geometric Definition of a Parabola

5 The graph of the equation y = ax 2 + bx + c is a U-shaped curve called a parabola that opens either upward or downward, depending on whether the sign of a is positive or negative. In this section we study parabolas from a geometric rather than an algebraic point of view. We begin with the geometric definition of a parabola and show how this leads to the algebraic formula that we are already familiar with.

6 Geometric Definition of a Parabola This definition is illustrated in Figure 1. The vertex V of the parabola lies halfway between the focus and the directrix, and the axis of symmetry is the line that runs through the focus perpendicular to the directrix. Figure 1

7 Geometric Definition of a Parabola In this section we restrict our attention to parabolas that are situated with the vertex at the origin and that have a vertical or horizontal axis of symmetry. If the focus of such a parabola is the point F(0, p), then the axis of symmetry must be vertical, and the directrix has the equation y = –p. Figure 2 illustrates the case p > 0. Figure 2

8 Geometric Definition of a Parabola If P(x, y) is any point on the parabola, then the distance from P to the focus F (using the Distance Formula) is The distance from P to the directrix is By the definition of a parabola these two distances must be equal:

9 Geometric Definition of a Parabola x 2 + (y – p) 2 = 0| y + p | 2 = (y + p) 2 x 2 + y 2 – 2py + p 2 = y 2 + 2py + p 2 x 2 – 2py = 2py x 2 = 4py If p > 0, then the parabola opens upward; but if p < 0, it opens downward. When x is replaced by –x, the equation remains unchanged, so the graph is symmetric about the y-axis. Square both sides Expand Simplify

10 Equations and Graphs of Parabolas

11 Equations and Graphs of Parabolas The following box summarizes about the equation and features of a parabola with a vertical axis.

12 Example 1 – Finding the Equation of a Parabola Find an equation for the parabola with vertex V(0, 0) and focus F(0, 2), and sketch its graph. Solution: Since the focus is F(0, 2), we conclude that p = 2 (so the directrix is y = –2). Thus the equation of the parabola is x 2 = 4(2)y x 2 = 8y x 2 = 4py with p = 2

13 Example 1 – Solution Since p = 2 > 0, the parabola opens upwards. See Figure 3. cont’d Figure 3

14 Example 2 – Finding the Focus and Directrix of a Parabola from Its Equation Find the focus and directrix of the parabola y = –x 2, and sketch the graph. Solution: To find the focus and directrix, we put the given equation in the standard form x 2 = –y. Comparing this to the general equation x 2 = 4py, we see that 4p = –1, so p = –. Thus the focus is F(0, – ), and the directrix is y =.

15 Example 2 – Solution The graph of the parabola, together with the focus and the directrix, is shown in Figure 4(a). We can also draw the graph using a graphing calculator as shown in Figure 4(b). cont’d (a) (b) Figure 4

16 Equations and Graphs of Parabolas Reflecting the graph in Figure 2 about the diagonal line y = x has the effect of interchanging the roles of x and y. This results in a parabola with horizontal axis. Figure 2

17 Equations and Graphs of Parabolas By the same method as before, we can prove the following properties.

18 Example 3 – A Parabola with Horizontal Axis A parabola has the equation 6x + y 2 = 0. (a) Find the focus and directrix of the parabola and sketch the graph. (b) Use a graphing calculator to draw the graph. Solution: To find the focus and directrix, we put the given equation in the standard form y 2 = –6x. Comparing this to the general equation y 2 = 4px we see that 4p = –6, so p = –. Thus the focus is F(–, 0), and the directrix is x =.

19 Example 3 – Solution Since p < 0, the parabola opens to the left. The graph of the parabola, together with the focus and the directrix, is shown in Figure 5(a) below. cont’d (a) Figure 5

20 Example 3 – Solution (b) To draw the graph using a graphing calculator, we need to solve for y. 6x + y 2 = 0 y 2 = –6x y =  cont’d Subtract 6x Take square roots

21 Example 3 – Solution To obtain the graph of the parabola, we graph both functions y = and y = – as shown in Figure 5(b). cont’d (b) Figure 5

22 Equations and Graphs of Parabolas We can use the coordinates of the focus to estimate the “width” of a parabola when sketching its graph. The line segment that runs through the focus perpendicular to the axis, with endpoints on the parabola, is called the latus rectum, and its length is the focal diameter of the parabola.

23 Equations and Graphs of Parabolas From Figure 6 we can see that the distance from an endpoint Q of the latus rectum to the directrix is |2p|. Thus the distance from Q to the focus must be |2p| as well (by the definition of a parabola), so the focal diameter is |4p|. In the next example we use the focal diameter to determine the “width” of a parabola when graphing it. Figure 6

24 Example 4 – The Focal Diameter of a Parabola Find the focus, directrix, and focal diameter of the parabola y = x 2, and sketch its graph. Solution: We first put the equation in the form x 2 = 4py. y = x 2 x 2 = 2y From this equation we see that 4p = 2, so the focal diameter is 2. Solving for p gives p =, so the focus is (0, ) and the directrix is y = –. Multiply by 2, switch sides

25 Example 4 – Solution Since the focal diameter is 2, the latus rectum extends 1 unit to the left and 1 unit to the right of the focus. The graph is sketched in Figure 7. cont’d Figure 7

26 Equations and Graphs of Parabolas In the next example we graph a family of parabolas, to show how changing the distance between the focus and the vertex affects the “width” of a parabola.

27 Example 5 – A Family of Parabolas (a) Find equations for the parabolas with vertex at the origin and foci F 1 (0, ), F 2 (0, ), F 3 (0, 1) and F 4 (0, 4). (b) Draw the graphs of the parabolas in part (a). What do you conclude?

28 Example 5 – Solution (a) Since the foci are on the positive y-axis, the parabolas open upward and have equations of the form x 2 = 4py. This leads to the following equations. cont’d

29 Example 5 – Solution (b) The graphs are drawn in Figure 8. We see that the closer the focus is to the vertex, the narrower the parabola. y = x 2 y = 0.5x 2 y = 0.25x 2 y = 2x 2 A family of parabolas Figure 8 cont’d

30 Applications

31 Applications Parabolas have an important property that makes them useful as reflectors for lamps and telescopes. Light from a source placed at the focus of a surface with parabolic cross section will be reflected in such a way that it travels parallel to the axis of the parabola (see Figure 9). Figure 9 Parabolic reflector

32 Applications Thus, a parabolic mirror reflects the light into a beam of parallel rays. Conversely, light approaching the reflector in rays parallel to its axis of symmetry is concentrated to the focus. This reflection property, which can be proved by using calculus, is used in the construction of reflecting telescopes.

33 Example 6 – Finding the Focal Point of a Searchlight Reflector A searchlight has a parabolic reflector that forms a “bowl,” which is 12 in. wide from rim to rim and 8 in. deep, as shown in Figure 10. If the filament of the light bulb is located at the focus, how far from the vertex of the reflector is it? Figure 10 A Parabolic reflector

34 Example 6 – Solution We introduce a coordinate system and place a parabolic cross section of the reflector so that its vertex is at the origin and its axis is vertical (see Figure 11). Then the equation of this parabola has the form x 2 = 4py. cont’d Figure 11

35 Example 6 – Solution From Figure 11 we see that the point (6, 8) lies on the parabola. We use this to find p. 6 2 = 4p(8) 36 = 32p p = The focus is F(0, ), so the distance between the vertex and the focus is = in. Because the filament is positioned at the focus, it is located in. from the vertex of the reflector. cont’d The point (6, 8) satisfies the equation x 2 = 4py