Lecture 19 OUTLINE The MOSFET: Structure and operation

Slides:



Advertisements
Similar presentations
Lecture Metal-Oxide-Semiconductor (MOS) Field-Effect Transistors (FET) MOSFET Introduction 1.
Advertisements

MICROWAVE FET Microwave FET : operates in the microwave frequencies
EE130/230A Discussion 12 Peng Zheng 1. Velocity Saturation Velocity saturation limits I Dsat in sub-micron MOSFETS Simple model: E sat is the electric.
Chapter 6 The Field Effect Transistor
MOSFETs Monday 19 th September. MOSFETs Monday 19 th September In this presentation we will look at the following: State the main differences between.
EE42/100, Spring 2006Week 14a, Prof. White1 Week 14a Propagation delay of logic gates CMOS (complementary MOS) logic gates Pull-down and pull-up The basic.
Lecture 11: MOS Transistor
Lecture #26 Gate delays, MOS logic
Spring 2007EE130 Lecture 35, Slide 1 Lecture #35 OUTLINE The MOS Capacitor: Final comments The MOSFET: Structure and operation Reading: Chapter 17.1.
10/8/2004EE 42 fall 2004 lecture 171 Lecture #17 MOS transistors MIDTERM coming up a week from Monday (October 18 th ) Next Week: Review, examples, circuits.
Lecture 15 OUTLINE MOSFET structure & operation (qualitative)
EE415 VLSI Design The Devices: MOS Transistor [Adapted from Rabaey’s Digital Integrated Circuits, ©2002, J. Rabaey et al.]
Lecture #16 OUTLINE Diode analysis and applications continued
The metal-oxide field-effect transistor (MOSFET)
Lecture 19, Slide 1EECS40, Fall 2004Prof. White Lecture #19 ANNOUNCEMENTS Midterm 2 Thursday Nov. 18, 12:40-2:00 pm A-L initials in F295 Haas Business.
Reading: Finish Chapter 6
Week 9a OUTLINE MOSFET ID vs. VGS characteristic
Week 8b OUTLINE Using pn-diodes to isolate transistors in an IC
Chap. 5 Field-effect transistors (FET) Importance for LSI/VLSI –Low fabrication cost –Small size –Low power consumption Applications –Microprocessors –Memories.
Spring 2007EE130 Lecture 36, Slide 1 Lecture #36 ANNOUNCEMENTS Updated information for Term Project was posted on 4/14 Reminder: Coffee Hour today at ~4PM!
Spring 2007EE130 Lecture 38, Slide 1 Lecture #38 OUTLINE The MOSFET: Bulk-charge theory Body effect parameter Channel length modulation parameter PMOSFET.
EE105 Fall 2007Lecture 16, Slide 1Prof. Liu, UC Berkeley Lecture 16 OUTLINE MOS capacitor (cont’d) – Effect of channel-to-body bias – Small-signal capacitance.
EE314 IBM/Motorola Power PC620 IBM Power PC 601 Motorola MC68020 Field Effect Transistors.
Optional Reading: Pierret 4; Hu 3
Metal-Oxide-Semiconductor Field Effect Transistors
Dr. Nasim Zafar Electronics 1 - EEE 231 Fall Semester – 2012 COMSATS Institute of Information Technology Virtual campus Islamabad.
Semiconductor Devices III Physics 355. Transistors in CPUs Moore’s Law (1965): the number of components in an integrated circuit will double every year;
EE130/230A Discussion 11 Peng Zheng.
© 2012 Eric Pop, UIUCECE 340: Semiconductor Electronics ECE 340 Lecture 35 MOS Field-Effect Transistor (MOSFET) The MOSFET is an MOS capacitor with Source/Drain.
Field-Effect Transistor
EEE1012 Introduction to Electrical & Electronics Engineering Chapter 7: Field Effect Transistor by Muhazam Mustapha, October 2010.
Digital Integrated Circuits© Prentice Hall 1995 Introduction The Devices.
ECE 342 Electronic Circuits 2. MOS Transistors
Norhayati Soin 06 KEEE 4426 WEEK 7/1 6/02/2006 CHAPTER 2 WEEK 7 CHAPTER 2 MOSFETS I-V CHARACTERISTICS CHAPTER 2.
Introduction to Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs) Chapter 7, Anderson and Anderson.
Chapter 5: Field Effect Transistor
1 Metal-Oxide-Semicondutor FET (MOSFET) Copyright  2004 by Oxford University Press, Inc. 2 Figure 4.1 Physical structure of the enhancement-type NMOS.
Chapter 4 Field-Effect Transistors
Filed Effect Transistor.  In 1945, Shockley had an idea for making a solid state device out of semiconductors.  He reasoned that a strong electrical.
NMOS PMOS. K-Map of NAND gate CMOS Realization of NAND gate.
ECE340 ELECTRONICS I MOSFET TRANSISTORS AND AMPLIFIERS.
Lecture 23 OUTLINE The MOSFET (cont’d) Drain-induced effects Source/drain structure CMOS technology Reading: Pierret 19.1,19.2; Hu 6.10, 7.3 Optional Reading:
Budapest University of Technology and Economics Department of Electron Devices Microelectronics, BSc course Field effect transistors.
UNIT I MOS TRANSISTOR THEORY AND PROCESS TECHNOLOGY
Structure and Operation of MOS Transistor
EE141 © Digital Integrated Circuits 2nd Devices 1 Goal of this lecture  Present understanding of device operation  nMOS/pMOS as switches  How to design.
Lecture 18 OUTLINE The MOS Capacitor (cont’d) – Effect of oxide charges – V T adjustment – Poly-Si gate depletion effect Reading: Pierret ; Hu.
MOSFET Placing an insulating layer between the gate and the channel allows for a wider range of control (gate) voltages and further decreases the gate.
Integrated Circuit Devices Professor Ali Javey Summer 2009 MOSFETs Reading: Chapters 17 & 18.
1 Other Transistor Topologies 30 March and 1 April 2015 The two gate terminals are tied together to form single gate connection; the source terminal is.
CHAPTER 6: MOSFET & RELATED DEVICES CHAPTER 6: MOSFET & RELATED DEVICES Part 2.
Metal-oxide-semiconductor field-effect transistors (MOSFETs) allow high density and low power dissipation. To reduce system cost and increase portability,
Field Effect Transistor (FET)
Transistors (MOSFETs)
ECE 333 Linear Electronics
Field Effect Transistors
EE130/230A Discussion 10 Peng Zheng.
course Name: Semiconductors
Damu, 2008EGE535 Fall 08, Lecture 21 EGE535 Low Power VLSI Design Lecture #2 MOSFET Basics.
CMOS VLSI Design 4th Ed. EEL 6167: VLSI Design Wujie Wen, Assistant Professor Department of ECE Lecture 3A: CMOs Transistor Theory Slides adapted from.
Lecture 21 OUTLINE The MOSFET (cont’d) P-channel MOSFET
Lecture 20 OUTLINE The MOSFET (cont’d) Qualitative theory
Lecture 19 OUTLINE The MOSFET: Structure and operation
Lecture 19 OUTLINE The MOS Capacitor (cont’d) The MOSFET:
Lecture 21 OUTLINE The MOSFET (cont’d) P-channel MOSFET
Lecture 20 OUTLINE The MOSFET (cont’d) Qualitative theory
Lecture 19 OUTLINE The MOS Capacitor (cont’d) The MOSFET:
Lecture #15 OUTLINE Diode analysis and applications continued
Lecture 20 OUTLINE The MOSFET (cont’d)
Lecture 20 OUTLINE The MOSFET (cont’d)
Presentation transcript:

Lecture 19 OUTLINE The MOSFET: Structure and operation Qualitative theory of operation Field-effect mobility Body bias effect Reading: Pierret 17.1, 18.3.4; Hu 6.1-6.5

Invention of the Field-Effect Transistor O. Heil, British Patent 439,457 (1935) In 1935, a British patent was issued to Oskar Heil. A working MOSFET was not demonstrated until 1955. EE130/230A Fall 2013 Lecture 19, Slide 2

Metal Oxide Semiconductor Field Effect Transistor (MOSFET) An electric field is applied normal to the surface of the semiconductor (by applying a voltage to an overlying electrode), to modulate the conductance of the semiconductor. Drift current flowing between 2 doped regions (“source” & “drain”) is modulated by varying the voltage on the “gate” electrode. EE130/230A Fall 2013 Lecture 19, Slide 3 R. F. Pierret, Semiconductor Device Fundamentals, Fig. 17.1

P. Packan et al., IEDM Technical Digest, pp. 659-662, 2009 Modern MOSFETs GATE LENGTH, Lg Metal-Oxide-Semiconductor Field-Effect Transistor: OXIDE THICKNESS, xo Intel’s 32nm CMOSFETs Gate Desired characteristics: High ON current Low OFF current Source Drain Substrate P. Packan et al., IEDM Technical Digest, pp. 659-662, 2009 Current flowing between the SOURCE and DRAIN is controlled by the voltage on the GATE electrode |GATE VOLTAGE| CURRENT “N-channel” & “P-channel” MOSFETs operate in a complementary manner “CMOS” = Complementary MOS VT EE130/230A Fall 2013 Lecture 19, Slide 4 4

N-channel vs. P-channel NMOS PMOS p-type Si N+ poly-Si n-type Si P+ poly-Si N+ N+ P+ P+ For current to flow, VGS > VT to form n-type channel at surface Enhancement mode: VT > 0 Depletion mode: VT < 0 Transistor is ON when VG=0V For current to flow, VGS < VT to form p-type channel at surface Enhancement mode: VT < 0 Depletion mode: VT > 0 Transistor is ON when VG=0V EE130/230A Fall 2013 Lecture 19, Slide 5

Enhancement Mode vs. Depletion Mode R. F. Pierret, Semiconductor Device Fundamentals, Fig. 18.18 Enhancement Mode Depletion Mode Conduction between source and drain regions is enhanced by applying a gate voltage A gate voltage must be applied to deplete the channel region in order to turn off the transistor EE130/230A Fall 2013 Lecture 19, Slide 6

CMOS Devices and Circuits CIRCUIT SYMBOLS N-channel MOSFET P-channel GND VDD S D CMOS INVERTER CIRCUIT VIN VOUT VOUT VIN VDD INVERTER LOGIC SYMBOL When VG = VDD , the NMOSFET is on and the PMOSFET is off. When VG = 0, the PMOSFET is on and the NMOSFET is off. And let’s move on to the FinFET based designs. We will start with the conventional double gated 6-T configuration. Here is our proposed layout. For gate WF adjustment, we are using angled implants. Therefore, from a process integration perspective, this type of layout prefers a single gate WF material. We are using 4.75eV gate WF here, which is close to the mid-gap. So our devices do have relatively high Vts, and that does reduce the cell leakage as I will mention later. From the layout, you see that we no longer need the big gap between N and P type devices. This is b/c for FinFETs, the substrate doesn’t define the transistor type, so we can have seamless transition from N-type to P-type active, avoiding the two contacts. So with 1 fin on the pull down devices, which is equivalent to having a beta ratio of 1, we can achieve 175mV of read margin. And the layout takes up about 0.36um2. So we do end up with a stable cell and less area compared to the bulk SRAM cell. EE130/230A Fall 2013 Lecture 19, Slide 7

“Pull-Down” and “Pull-Up” Devices In CMOS logic gates, NMOSFETs are used to connect the output to GND, whereas PMOSFETs are used to connect the output to VDD. An NMOSFET functions as a pull-down device when it is turned on (gate voltage = VDD) A PMOSFET functions as a pull-up device when it is turned on (gate voltage = GND) VDD A1 A2 AN Pull-up network input signals PMOSFETs only … F(A1, A2, …, AN) A1 A2 AN Pull-down network NMOSFETs only … EE130/230A Fall 2013 Lecture 19, Slide 8

CMOS NAND Gate VDD A B F A B A B F 1 EE130/230A Fall 2013 1 A B F A B EE130/230A Fall 2013 Lecture 19, Slide 9

CMOS NOR Gate VDD A B F B A A B F 1 EE130/230A Fall 2013 1 A B F B A EE130/230A Fall 2013 Lecture 19, Slide 10

CMOS Pass Gate A X Y Y = X if A A EE130/230A Fall 2013 Lecture 19, Slide 11

Qualitative Theory of the NMOSFET VGS < VT : depletion layer The potential barrier to electron flow from the source into the channel region is lowered by applying VGS> VT Inversion-layer “channel” is formed VGS > VT : VDS  0 VDS > 0 Electrons flow from the source to the drain by drift, when VDS>0. (IDS > 0) The channel potential varies from VS at the source end to VD at the drain end. EE130/230A Fall 2013 Lecture 19, Slide 12 R. F. Pierret, Semiconductor Device Fundamentals, Fig. 17.2

MOSFET Linear Region of Operation For small values of VDS (i.e. for VDS << VGVT), where meff is the effective carrier mobility Hence the NMOSFET can be modeled as a resistor: EE130/230A Fall 2013 Lecture 19, Slide 13

Field-Effect Mobility, meff Scattering mechanisms: Coulombic scattering phonon scattering surface roughness scattering EE130/230A Fall 2013 Lecture 19, Slide 14 C. C. Hu, Modern Semiconductor Devices for Integrated Circuits, Figure 6-9

MOSFET Saturation Region of Operation VDS = VGS-VT VDS > VGS-VT When VD is increased to be equal to VG-VT, the inversion-layer charge density at the drain end of the channel equals 0, i.e. the channel becomes “pinched off” As VD is increased above VG-VT, the length DL of the “pinch-off” region increases. The voltage applied across the inversion layer is always VDsat=VGS-VT, and so the current saturates. ID VDS EE130/230A Fall 2013 Lecture 19, Slide 15 R. F. Pierret, Semiconductor Device Fundamentals, Figs. 17.2, 17-3

Ideal NMOSFET I-V Characteristics EE130/230A Fall 2013 Lecture 19, Slide 16 R. F. Pierret, Semiconductor Device Fundamentals, Fig. 17.4

Channel Length Modulation As VDS is increased above VDsat, the width DL of the depletion region between the pinch-off point and the drain increases, i.e. the inversion layer length decreases. If DL is significant compared to L, then IDS will increase slightly with increasing VDS>VDsat, due to “channel-length modulation” IDS VDS EE130/230A Fall 2013 Lecture 19, Slide 17 R. F. Pierret, Semiconductor Device Fundamentals, Figs. 17.2, 17-3

Body Bias When a MOS device is biased into inversion, a pn junction exists between the surface and the bulk. If the inversion layer contacts a heavily doped region of the same type, it is possible to apply a bias to this pn junction. N+ poly-Si VG is biased so that surface is inverted n-type inversion layer is contacted by N+ region If a bias VC is applied to the channel, a reverse bias (VB-VC) is applied between the channel and body + + + + + + + + SiO2 - - - - - N+ - - - - p-type Si EE130/230A Fall 2013 Lecture 19, Slide 18

Effect of VCB on fS, W and VT Application of a reverse body bias  non-equilibrium  2 Fermi levels (one in n-type region, one in p-type region) are separated by qVBC  fS is increased by VCB Reverse body bias widens W, increases Qdep and hence VT EE130/230A Fall 2013 Lecture 19, Slide 19