BJT FREQUENCY RESPONSE

Slides:



Advertisements
Similar presentations
Introductory Circuit Analysis Robert L. Boylestad
Advertisements

MULTISTAGE AMPLIFIERS
Electronic Devices Ninth Edition Floyd Chapter 10.
Frequency Characteristics of AC Circuits
Chapter 9: BJT and FET Frequency Response
Frequency response I As the frequency of the processed signals increases, the effects of parasitic capacitance in (BJT/MOS) transistors start to manifest.
Bipolar Junction Transistor Amplifier
Voltage-Series Feedback
COMSATS Institute of Information Technology Virtual campus Islamabad
Amplifier Frequency Response
Series Resonance ET 242 Circuit Analysis II
Fig. 7.1 Bode plot for the typical magnitude term. The curve shown applies for the case of a zero. For a pole, the high-frequency asymptote should be drawn.
Parallel Resonance ET 242 Circuit Analysis II Electrical and Telecommunication Engineering Technology Professor Jang.
Network Theorems SUPERPOSITION THEOREM THÉVENIN’S THEOREM
Single-Stage Integrated- Circuit Amplifiers
Lecture No. 11 By. Sajid Hussain Qazi
Lecture no 2 to 5 THE BASIC BJT AMPLIFIER CONFIGURATIONS
 The output from a single amplifier is generally insufficient to drive an output device. In other words, the gain of a single amplifier is inadequate.
ANALOGUE ELECTRONICS II
Frequency Characteristics of AC Circuits
Chapter 15 – Series & Parallel ac Circuits Lecture 20 by Moeen Ghiyas 19/08/
Transistor Biasing What is meant by biasing the transistor?
Robert Boylestad Digital Electronics Copyright ©2002 by Pearson Education, Inc. Upper Saddle River, New Jersey All rights reserved. Chapter 11: BJT.
1 Frequency response I As the frequency of the processed signals increases, the effects of parasitic capacitance in (BJT/MOS) transistors start to manifest.
Filters and the Bode Plot
Part B-3 AMPLIFIERS: Small signal low frequency transistor amplifier circuits: h-parameter representation of a transistor, Analysis of single stage transistor.
Copyright ©2011 by Pearson Education, Inc. publishing as Pearson [imprint] Introductory Circuit Analysis, 12/e Boylestad Chapter 20 Resonance.
BJT Transistor Modeling - I Electronic Circuits First Term Second Year (11CS Batch) 1.
Copyright ©2011 by Pearson Education, Inc. publishing as Pearson [imprint] Introductory Circuit Analysis, 12/e Boylestad Chapter 21 Decibels, Filters,
Chapter 6:BJT Amplifiers
General Characteristics of Negative-Feedback Amplifiers
Microelectronic Circuits, Sixth Edition Sedra/Smith Copyright © 2010 by Oxford University Press, Inc. C H A P T E R 9 Frequency Response.
General Characteristics of Negative-Feedback Amplifiers
Copyright ©2011 by Pearson Education, Inc. publishing as Pearson [imprint] Introductory Circuit Analysis, 12/e Boylestad Chapter 21 Decibels, Filters,
Series and Parallel ac Circuits.
MALVINO Electronic PRINCIPLES SIXTH EDITION.
Prepared by: Garima Devpriya ( ) Jamila Kharodawala ( ) Megha Sharma ( ) ELECTRONICS DEVICES AND CIRCUITS G.H.Patel.
6/8/2016Faculty of Engineering Cairo University Chap Lecture 2 Single-Transistor Amplifiers Dr. Ahmed Nader Adapted from presentation by Richard.
CHAPTER 5 DC AND AC BRIDGES.
Chapter 6 BJT Amplifiers
The Working Theory of an RC Coupled Amplifier in Electronics.
Chapter 14 Series and Parallel AC Circuits. Objectives Become familiar with the characteristics of a series and parallel ac circuit Find the total impedance.
BJT and JFET Frequency Response
Chapter 13 Small-Signal Modeling and Linear Amplification
Transistor Modelling A model is a combination of circuit elements, properly chosen, that best approximates the actual behaviour of a semiconductor device.
Lesson 23: AC Resonance.
Lesson 24: Introduction to Filters
BJT Amplifiers.
Feedback Xs Xi Xo + - Xf βf
Frequency response I As the frequency of the processed signals increases, the effects of parasitic capacitance in (BJT/MOS) transistors start to manifest.
MECH 373 Instrumentation and Measurements
Chapter 9 Common-Emitter Amplifiers
General Characteristics of Negative Feedback Amplifiers
MECH 373 Instrumentation and Measurements
Filters and the Bode Plot
TOPIC 3: FREQUENCY SELECTIVE CIRCUITS
SMALL SIGNAL ANALYSIS OF CE AMPLIFIER
Lecture V Low Frequency Response of BJT Amplifiers
Small-Signal Modeling and Linear Amplification
Chapter 5: BJT AC Analysis
Chapter 6 Feedback Circuits
MULTISTAGE AMPLIFIERS
Fundamentals of Electric Circuits Chapter 14
ELECTRONIC CIRCUIT ANALYSIS
2.8 CLIPPERS A. Series clipper: The addition of a dc supply such as shown in Fig can have a pronounced effect on the on the anatysis of the series.
Transmission Lines and Waveguides
C H A P T E R 17 A.C. Filter Networks.
BLM Circuit Theory Prof. Dr. Nizamettin AYDIN
CHAPTER 59 TRANSISTOR EQUIVALENT CIRCUITS AND MODELS
Frequency response I As the frequency of the processed signals increases, the effects of parasitic capacitance in (BJT/MOS) transistors start to manifest.
Presentation transcript:

BJT FREQUENCY RESPONSE C H A P T E R 11 BJT FREQUENCY RESPONSE

INTRODUCTION We will now investigate the frequency effects introduced by the larger capacitive elements of the network at low frequencies and the smaller capacitive elements of the active device at the high frequencies. Since the analysis will extend through a wide frequency range, the logarithmic scale will be defined and used throughout the analysis. The frequency response analyses of BJTs permit a coverage in the chapter.

LOGARITHMS The use of log scales can significantly expand the range of variation of a particular variable on a graph. Most graph paper available is of the semi log or double-log (log-log) variety.

LOGARITHMS Note that the vertical scale is a linear scale with equal divisions. The spacing between the lines of the log plot is shown on the graph.

LOGARITHMS The log of 2 to the base 10 is approximately 0.3. The distance from 1 (log10 1 = 0) to 2 is therefore 30% of the span and so on

LOGARITHMS It is important to note the resulting numerical value and the spacing, since plots will typically only have the tic marks indicated in Fig. 11.2 due to a lack of space. You must realize that the longer bars for this figure have the numerical values of 0.3, 3, and 30 associated with them, whereas the next shorter bars have values of 0.5, 5, and 50 and the shortest bars 0.7, 7, and 70.

LOGARITHMS The important point is that the results extracted at each level be correctly labeled by developing a familiarity with the spacing of Figs. 11.1 and 11.2.

DECIBELS The background surrounding the term decibel has its origin that power and audio levels are related on a logarithmic basis. That is, an increase in power level, say 4 to 16 W, does not result in an audio level increase by a factor of 16/4 = 4. It will increase by a factor of 2 as derived from the power of 4 in the following manner: (4)2 =16. For a change of 4 to 64 W, the audio level will increase by a factor of 3 since (4)3 =64. In logarithmic form, the relationship can be written as log4 64 = 3.

DECIBELS The term bel was derived from the surname of Alexander Graham Bell. For standardization, the bel (B) was defined by the following equation to relate power levels P1 and P2: It was found, however, that the bel was too large a unit of measurement for practical purposes, so the decibel (dB) was defined such that 10 decibels = 1 bel. Therefore,

DECIBELS The above equation indicates that the decibel rating is a measure of the difference in magnitude between two power levels. For a specified terminal (output) power (P2) there must be a reference power level (P1). The reference level is generally accepted to be 1 mW, although on occasion, the 6-mW standard of earlier years is applied. The resistance to be associated with the 1-mW power level is 600Ω chosen because it is the characteristic impedance of audio transmission lines.

DECIBELS There exists a second equation for decibels that is applied frequently. It can be best described through the system of Fig. 11.3. Figure 11.3 Configuration employed in the discussion For Vi equal to some value V1, P1 = V21/Ri, where Ri, is the input resistance of the system of Fig. 11.3. If Vi should be increased (or decreased) to some other level, V2, then P2 = V22 /Ri.

DECIBELS If we determine the resulting difference in decibels between the power levels, Figure 11.3 Configuration employed in the discussion

DECIBELS One of the advantages of the logarithmic relationship is the manner in which it can be applied to cascaded stages. For example, the magnitude of the overall voltage gain of a cascaded system is given by

DECIBELS In an effort to develop some association between dB levels and voltage gains, Table 11.2 was developed. First note that a gain of 2 results in a dB level of +6 dB while a drop to 1/2 results in a -6dB level. A change in Vo/Vi from 1 to 10, 10 to 100, or 100 to 1000 results in the same 20dB change in level. When Vo = Vi, Vo/Vi = 1 and the dB level is 0.

DECIBELS

DECIBELS

GENERAL FREQUENCY CONSIDERATIONS The frequency of the applied signal can have an effect on the response of a single-stage or multistage network. At low frequencies, we shall find that the coupling and bypass capacitors can no longer be replaced by the short- circuit approximation because of the increase in reactance of these elements. The frequency-dependent parameters of the small-signal equivalent circuits and the stray capacitive elements associated with the active device and the network will limit the high-frequency response of the system. An increase in the number of stages of a cascaded system will also limit both the high- and low-frequency responses.

GENERAL FREQUENCY CONSIDERATIONS The magnitudes of the gain response curves of an RC-coupled, direct-coupled, and transformer-coupled amplifier system are provided in Fig. 11.4. Note that the horizontal scale is a logarithmic scale to permit a plot extending from the low- to the high-frequency regions.

GENERAL FREQUENCY CONSIDERATIONS For the RC-coupled amplifier, the drop at low frequencies is due to the increasing reactance of CC, Cs, or CE,

GENERAL FREQUENCY CONSIDERATIONS while its upper frequency limit is determined by either the parasitic capacitive elements of the network and frequency dependence of the gain of the active device.

GENERAL FREQUENCY CONSIDERATIONS Let us say that the drop in gain for the transformer-coupled system is simply due to the “shorting effect” (across the input terminals of the transformer) of the magnetizing inductive reactance at low frequencies (XL =2ᴨfL). The gain must obviously be zero at f= 0 since at this point there is no longer a changing flux established through the core to induce a secondary or output voltage.

GENERAL FREQUENCY CONSIDERATIONS As indicated in Fig. 11.4, the high-frequency response is controlled primarily by the stray capacitance between the turns of the primary and secondary windings. For the direct-coupled amplifier, there are no coupling or bypass capacitors to cause a drop in gain at low frequencies. As the figure indicates, it is a flat response to the upper cutoff frequency, which is determined by either the parasitic capacitances of the circuit or the frequency dependence of the gain of the active device.

GENERAL FREQUENCY CONSIDERATIONS For each system of Fig. 11.4, there is a band of frequencies in which the magnitude of the gain is either equal or relatively close to the mid-band value. To fix the frequency boundaries of relatively high gain, 0.707Avmid was chosen to be the gain at the cutoff levels. The corresponding frequencies f1 and f2 are generally called the corner, cutoff, band, break, or half-power frequencies. The multiplier 0.707 was chosen because at this level the output power is half the mid-band power output, that is, at mid-frequencies,

GENERAL FREQUENCY CONSIDERATIONS and at the half-power frequencies, and The bandwidth (or pass-band) of each system is determined by f1 and f2, that is,

GENERAL FREQUENCY CONSIDERATIONS In Fig. 11.5, the gain at each frequency is divided by the mid-band value. Obviously, the mid-band value is then one as indicated. At the half-power frequencies the resulting level is 0.707=1/√2. A decibel plot can now be obtained by applying :

GENERAL FREQUENCY CONSIDERATIONS At mid-band frequencies, 20 log10 (1) = 0dB, and at the cutoff frequencies, 20 log10 (1/√2)= -3 dB. Both values are clearly indicated in the resulting decibel plot of Fig. 11.6. The smaller the fraction ratio, the more negative the decibel level.

GENERAL FREQUENCY CONSIDERATIONS It should be understood that most amplifiers introduce a 180° phase shift between input and output signals. This fact must now be expanded to indicate that this is the case only in the mid-band region. At low frequencies, there is a phase shift such that Vo lags Vi by an increased angle. At high frequencies, the phase shift will drop below 180°. Figure 11.7 is a standard phase plot for an RC-coupled amplifier.

LOW-FREQUENCY ANALYSIS—BODE PLOT In the low-frequency region of the single-stage BJT amplifier, the R-C combinations formed by the network capacitors CC, CE, and Cs and the network resistive parameters that determine the cutoff frequencies. In fact, an R-C network similar to Fig. 11.8 can be established for each capacitive element and the frequency at which the output voltage drops to 0.707 of its maximum value determined. Once the cutoff frequencies due to each capacitor are determined, they can be compared to establish which will determine the low-cutoff frequency for the system.

LOW-FREQUENCY ANALYSIS—BODE PLOT At very high frequencies, and the short-circuit equivalent can be substituted for the capacitor as shown in Fig. 11.9. The result is that Vo ≈Vi at high frequencies. At f = 0 Hz, and the open-circuit approximation can be applied as shown in Fig. 11.10, with the result that Vo = 0 V.

LOW-FREQUENCY ANALYSIS—BODE PLOT Between the two extremes, the ratio Av =Vo/Vi will vary as shown in Fig. 11.11. As the frequency increases, the capacitive reactance decreases and more of the input voltage appears across the output terminals. The output and input voltages are related by the voltage-divider rule in the following manner: with the magnitude of Vo determined by

LOW-FREQUENCY ANALYSIS—BODE PLOT For the special case where XC =R, the level of which is indicated on Fig. 11.11.

LOW-FREQUENCY ANALYSIS—BODE PLOT In other words, at the frequency of which XC =R, the output will be 70.7% of the input for the network of Fig. 11.8. The frequency at which this occurs is determined from

LOW-FREQUENCY ANALYSIS—BODE PLOT In Fig. 11.6, we recognize that there is a 3-dB drop in gain from the mid band level when f = f1. In a moment, we will find that an RC network will determine the low-frequency cutoff frequency for a BJT transistor and f1 will be determined by

LOW-FREQUENCY ANALYSIS—BODE PLOT

LOW-FREQUENCY ANALYSIS—BODE PLOT For frequencies where f˂˂f1 or (f1/f)2 ˃˃ 1, the equation above can be approximated by

LOW-FREQUENCY ANALYSIS—BODE PLOT In the same figure, a straight line is also drawn for the condition of 0 dB for f ˃˃ f1.

LOW-FREQUENCY ANALYSIS—BODE PLOT A change in frequency by a factor of 2, equivalent to 1 octave, results in a 6-dB change in the ratio as noted by the change in gain from f1/2 to f1. For a 10:1 change in frequency, equivalent to 1 decade, there is a 20-dB change in the ratio as demonstrated between the frequencies of f1/10 and f1.

LOW-FREQUENCY ANALYSIS—BODE PLOT A fairly accurate plot of the frequency response as indicated in the same figure. The piecewise linear plot of the asymptotes and associated breakpoints is called a Bode plot of the magnitude versus frequency.

LOW-FREQUENCY ANALYSIS—BODE PLOT The phase angle of ɵ is determined from

LOW-FREQUENCY ANALYSIS—BODE PLOT EXAMPLE 11.8 For the network of Fig. 11.13: (a) Determine the break frequency. (b) Sketch the asymptotes and locate the 3-dB point. (c) Sketch the frequency response curve.

LOW-FREQUENCY RESPONSE BJT AMPLIFIER For the network of Fig. 11.16, the capacitors Cs, CC, and CE will determine the low- frequency response. We will now examine the impact of each independently in the order listed. When we analyze the effects of Cs we must assume that the analysis of the reactance of CE and CC becomes too unwieldy, that is, that the magnitude of the reactance of CE and CC permits employing a short-circuit equivalent in comparison to the magnitude of the other series impedances.

LOW-FREQUENCY RESPONSE BJT AMPLIFIER The general form of the R-C configuration is established by the network of Fig. 11.17. The total resistance is now Rs + Ri, and the cutoff frequency is At mid or high frequencies, the reactance of the capacitor will be sufficiently small to permit a short-circuit approximation for the element. The voltage Vi will then be related to Vs by

LOW-FREQUENCY RESPONSE BJT AMPLIFIER The ac equivalent network for the input section of BJT amplifier will appear as shown in Fig. 11.18. The value of Ri for is determined by The voltage Vi applied to the input of the active device can be calculated using the voltage-divider rule:

LOW-FREQUENCY RESPONSE BJT AMPLIFIER Since the coupling capacitor is connected between the output of the active device and the applied load, the R-C configuration that determines the low cutoff frequency due to CC appears in Fig. 11.19. The cutoff frequency due to CC is determined by The ac equivalent network for the output section with Vi = 0 V appears in Fig. 11.20. The resulting value for Ro is then simply

LOW-FREQUENCY RESPONSE BJT AMPLIFIER To determine fLE, the network “seen” by CE must be determined as shown in Fig. 11.21. Once the level of Re is established, the cutoff frequency due to CE can be determined using the following equation: where Rs’ = Rs // R1 // R2. The loaded voltage-divider BJT bias configuration, the ac equivalent as “seen” by CE appears in Fig. 11.22. The value of Re is therefore determined by

LOW-FREQUENCY RESPONSE BJT AMPLIFIER The effect of CE on the gain is best described in a quantitative manner by recalling that the gain for the configuration of Fig. 11.23 is given by

LOW-FREQUENCY RESPONSE BJT AMPLIFIER EXAMPLE 11.9 (a) Determine the lower cutoff frequency for the network of Fig. 11.16 using the following parameters: (b) Sketch the frequency response using a Bode plot.

LOW-FREQUENCY RESPONSE BJT AMPLIFIER

LOW-FREQUENCY RESPONSE BJT AMPLIFIER

LOW-FREQUENCY RESPONSE BJT AMPLIFIER

LOW-FREQUENCY RESPONSE BJT AMPLIFIER

Miller Effect Capacitance In the high-frequency region, the capacitive elements of importance are the inter-electrode (between terminals) capacitances internal to the active device “Cbe, Cce, Cbc “, and the wiring capacitance between leads of the network “CMi, CMo.” Figure 11.39 Network employed in the derivation of an equation for the Miller input capacitance. For inverting amplifiers (phase shift of 180° between input and output resulting in a negative value for Av), the input and output capacitance is increased by a capacitance level sensitive to the interelectrode capacitance between the input and output terminals of the device “Cbc “and the gain of the amplifier. In Fig. 11.39, this “feedback” capacitance is defined by Cf.

Miller Effect Capacitance Figure 11.39 Network employed in the derivation of an equation for the Miller input capacitance.

Miller Effect Capacitance Establishing the equivalent network of Fig. 11.40. The result is an equivalent input impedance to the amplifier of Fig. 11.39 that includes the same Ri that we have dealt with in previous chapters, with the addition of a feedback capacitor magnified by the gain of the amplifier. Figure 11.39 Network employed in the derivation of an equation for the Miller input capacitance.

Miller Effect Capacitance Figure 11.39 Network employed in the derivation of an equation for the Miller input capacitance.

Miller Effect Capacitance This shows us that: For any inverting amplifier, the input capacitance will be increased by a Miller effect capacitance “CM” sensitive to the gain of the amplifier and the inter-electrode capacitance connected between the input and output terminals of the active device. Figure 11.39 Network employed in the derivation of an equation for the Miller input capacitance.

Miller Effect Capacitance The Miller effect will also increase the level of output capacitance, which must also be considered when the high-frequency cutoff is determined. In Fig. 11.41, the parameters of importance to determine the output Miller effect are in place. Applying Kirchhoff’s current law will result in

Miller Effect Capacitance

Miller Effect Capacitance

High-frequency Response BJT Amplifier Network Parameters In the high-frequency region, the RC network of concern has the configuration appearing in Fig. 11.42. At increasing frequencies, the reactance XC will decrease in magnitude, resulting in a shorting effect across the output and a decrease in gain. The derivation leading to the corner frequency for this RC configuration follows along similar lines to that encountered for the low-frequency region. The most significant difference is in the general form of Av appearing below:

High-frequency Response BJT Amplifier Which results in a magnitude plot such as shown in Fig. 11.43 that drops off at 6 dB/octave with increasing frequency

High-frequency Response BJT Amplifier In Fig. 11.44, the various parasitic capacitances (Cbe, Cbc, Cce) of the transistor have been included with the wiring capacitances (Cwi , CWo) introduced during construction. The high-frequency equivalent model for the network of Fig. 11.44 appears in Fig. 11.45. Figure 11.44 Network of Fig. 11.16 with the capacitors that affect the high-frequency response.

High-frequency Response BJT Amplifier The capacitance Ci includes the input wiring capacitance Cwi , the transition capacitance Cbe, and the Miller capacitance CMi. The capacitance Co includes the output wiring capacitance Cwo , the parasitic capacitance Cce , and the output Miller capacitance CMo.

High-frequency Response BJT Amplifier Determining the Thévenin equivalent circuit for the input and output networks of Fig. 11.45 will result in the configurations of Fig. 11.46. Figure 11.46 Thévenin circuits for the input and output networks of the network of Fig. 11.45.

High-frequency Response BJT Amplifier Figure 11.46 Thévenin circuits for the input and output networks of the network of Fig. 11.45. For the input network, the 3-dB frequency is defined by

High-frequency Response BJT Amplifier Figure 11.46 Thévenin circuits for the input and output networks of the network of Fig. 11.45. At very high frequencies, the effect of Ci is to reduce the total impedance of the parallel combination of R1, R2, Ri , and Ci in Fig. 11.45. The result is a reduced level of voltage across Ci , a reduction in Ib , and a gain for the system.

High-frequency Response BJT Amplifier Figure 11.46 Thévenin circuits for the input and output networks of the network of Fig. 11.45.

High-frequency Response BJT Amplifier Figure 11.46 Thévenin circuits for the input and output networks of the network of Fig. 11.45. At very high frequencies, the capacitive reactance of Co will decrease and consequently reduce the total impedance of the output parallel branches of Fig. 11.45. The net result is that Vo will also decline toward zero as the reactance XC becomes smaller.

High-frequency Response BJT Amplifier The frequencies fHi and fHo will each define a 6-dB/octave asymptote such as depicted in Fig. 11.43. If the parasitic capacitors were the only elements to determine the high cutoff frequency, the lowest frequency would be the determining factor. However, the decrease in hfe (or β ) with frequency must also be considered as to whether its break frequency is lower than fHi or fHo.

High-frequency Response BJT Amplifier hfe (or β ) Variation The variation of hfe (or β ) with frequency will approach, with some degree of accuracy, the following relationship: The only undefined quantity, fβ ,is determined by a set of parameters employed in the hybrid 𝝅 model frequently applied to best represent the transistor in the high-frequency region.