A. Ramšak* J. Mravlje T. Rejec* R. Žitko J. Bonča* The Kondo effect in multiple quantum dot systems and deformable molecules

Slides:



Advertisements
Similar presentations
Equations-of-motion technique applied to quantum dot models
Advertisements

Kondo Physics from a Quantum Information Perspective
- Mallorca - Spain Quantum Engineering of States and Devices: Theory and Experiments Obergurgl, Austria 2010 The two impurity.
Correlations in quantum dots: How far can analytics go? ♥ Slava Kashcheyevs Amnon Aharony Ora Entin-Wohlman Phys.Rev.B 73, (2006) PhD seminar on.
Dynamical response of nanoconductors: the example of the quantum RC circuit Christophe Mora Collaboration with Audrey Cottet, Takis Kontos, Michele Filippone,
Dynamical mean-field theory and the NRG as the impurity solver Rok Žitko Institute Jožef Stefan Ljubljana, Slovenia.
D-wave superconductivity induced by short-range antiferromagnetic correlations in the Kondo lattice systems Guang-Ming Zhang Dept. of Physics, Tsinghua.
Igor Aleiner (Columbia) Theory of Quantum Dots as Zero-dimensional Metallic Systems Physics of the Microworld Conference, Oct. 16 (2004) Collaborators:
1 Nonequilibrium Green’s Function Approach to Thermal Transport in Nanostructures Jian-Sheng Wang National University of Singapore.
Markus Büttiker University of Geneva The Capri Spring School on Transport in Nanostructures April 3-7, 2006 Scattering Theory of Conductance and Shot Noise.
Superconducting transport  Superconducting model Hamiltonians:  Nambu formalism  Current through a N/S junction  Supercurrent in an atomic contact.
Tunneling through a Luttinger dot R. Egger, Institut für Theoretische Physik Heinrich-Heine-Universität Düsseldorf M. Thorwart, S. Hügle, A.O. Gogolin.
Conductance of a spin-1 QD: two-stage Kondo effect Anna Posazhennikova Institut für Theoretische Festkörperphysik, Uni Karlsruhe, Germany Les Houches,
Chaos and interactions in nano-size metallic grains: the competition between superconductivity and ferromagnetism Yoram Alhassid (Yale) Introduction Universal.
The noise spectra of mesoscopic structures Eitan Rothstein With Amnon Aharony and Ora Entin Condensed matter seminar, BGU.
Renormalised Perturbation Theory ● Motivation ● Illustration with the Anderson impurity model ● Ways of calculating the renormalised parameters ● Range.
Quantum Dots – Past, Present and Open Questions Yigal Meir Department of Physics & The Ilse Katz Center for Meso- and Nano-scale Science and Technology.
Theory of the Quantum Mirage*
THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Studies of Antiferromagnetic Spin Fluctuations in Heavy Fermion Systems. G. Kotliar Rutgers University. Collaborators:
The noise spectra of mesoscopic structures Eitan Rothstein With Amnon Aharony and Ora Entin University of Latvia, Riga, Latvia.
Quantum conductance I.A. Shelykh St. Petersburg State Polytechnical University, St. Petersburg, Russia International Center for Condensed Matter Physics,
Capri spring school, April 2009 With collaborators: P. Mehta - Princeton C. Bolech - Rice A. Jerez - NJIT, Rutgers G. Palacios - Rutgers N. Andrei - Rutgers.
Avraham Schiller / Seattle 09 equilibrium: Real-time dynamics Avraham Schiller Quantum impurity systems out of Racah Institute of Physics, The Hebrew University.
Kondo, Fano and Dicke effects in side quantum dots Pedro Orellana UCN-Antofagasta.
Correlations in quantum dots: How far can analytics go?
Transport properties: conductance and thermopower
Quantum Master Equation Approach to Transport Wang Jian-Sheng 1.
Lecture 2 Magnetic Field: Classical Mechanics Magnetism: Landau levels Aharonov-Bohm effect Magneto-translations Josep Planelles.
© Copyright National University of Singapore. All Rights Reserved. ENHANCING THERMOELECTRIC EFFICIENCY FOR NANOSTRUCTURES AND QUANTUM DOTS Jian-Sheng Wang.
Quantum impurity physics and the “NRG Ljubljana” code Rok Žitko UIB, Palma de Mallorca, J. Stefan Institute, Ljubljana, Slovenia.
Quantum transport theory - analyzing higher order correlation effects by symbolic computation - the development of SymGF PhD Thesis Defense Feng, Zimin.
Coupled quantum dots: a laboratory for studying quantum impurity physics Rok Žitko SISSA, Trieste, Jožef Stefan Institute, Ljubljana, Slovenia.
Nonequilibrium Green’s Function and Quantum Master Equation Approach to Transport Wang Jian-Sheng 1.
Meir-WinGreen Formula
T. K. T. Nguyen, M. N. Kiselev, and V. E. Kravtsov The Abdus Salam ICTP, Trieste, Italy Effect of magnetic field on thermoelectric coefficients of a single.
Electronic States and Transport in Quantum dot Ryosuke Yoshii YITP Hayakawa Laboratory.
Correlated States in Optical Lattices Fei Zhou (PITP,UBC) Feb. 1, 2004 At Asian Center, UBC.
2003/8/18ISSP Int. Summer School Interaction effects in a transport through a point contact Collaborators A. Khaetskii (Univ. Basel) Y. Hirayama (NTT)
Quantum pumping and rectification effects in interacting quantum dots Francesco Romeo In collaboration with : Dr Roberta Citro Prof. Maria Marinaro University.
Physics Department, Beijing Normal University
Kvantna prepletenost v nano sistemih (1) motivacija (2) definicija kvantne prepletenosti (3) statični in leteči kvantni biti (4) prepletenost na zahtevo.
The Helical Luttinger Liquid and the Edge of Quantum Spin Hall Systems
Minimal Conductivity in Bilayer Graphene József Cserti Eötvös University Department of Physics of Complex Systems International School, MCRTN’06, Keszthely,
Theoretical study of the phase evolution in a quantum dot in the presence of Kondo correlations Mireille LAVAGNA Work done in collaboration with A. JEREZ.
1 The phonon Hall effect – NEGF and Green- Kubo treatments Jian-Sheng Wang, National University of Singapore.
Www-f1.ijs.si/~bonca/work.html Cambridge, 2006 J. Bonča Physics Department, FMF, University of Ljubljana, J. Stefan Institute, Ljubljana, SLOVENIA Conductance.
Discretization, z-averaging, thermodynamics, flow diagrams Rok Žitko Institute Jožef Stefan Ljubljana, Slovenia.
A. Ramšak 1,2 and T. Rejec 2 1 Faculty of Mathematics and Physics, University of Ljubljana 2 J. Stefan Institute, Ljubljana, Slovenia Conductance of nano-systems.
Www-f1.ijs.si/~bonca/work.html New 3 SC-6, Sydney, 2007 J. Bonča Physics Department, FMF, University of Ljubljana, J. Stefan Institute, Ljubljana, SLOVENIA.
A. Ramšak* J. Mravlje R. Žitko J. Bonča* T. Rejec* The Kondo effect in multiple quantum dot systems Department of Physics.
Charge pumping in mesoscopic systems coupled to a superconducting lead
THE KONDO EFFECT IN CARBON NANOTUBES
Slava Kashcheyevs Avraham Schiller Amnon Aharony Ora Entin-Wohlman Interference and correlations in two-level dots Phys. Rev. B 75, (2007) Also:
Exact ground states of a frustrated 2D magnet: deconfined fractional excitations at a first order quantum phase transition Cristian D. Batista and Stuart.
Kondo effect in a quantum dot without spin Hyun-Woo Lee (Postech) & Sejoong Kim (Postech  MIT) References: H.-W. Lee & S. Kim, cond-mat/ P. Silvestrov.
Quantum Thermal Transport
Transport Measurement of Andreev Bound States in a Kondo-Correlated Quantum Dot Experiment: B.-K. Kim, Y.-H. Ahn, J.-J. Kim, M.-H. Bae, N. Kim Theory:
Axion electrodynamics on the surface of topological insulators
Nonequilibrium Green’s Function Method for Thermal Transport Jian-Sheng Wang.
Thermal and electrical quantum Hall effects in ferromagnet — topological insulator — ferromagnet junction V. Kagalovsky 1 and A. L. Chudnovskiy 2 1 Shamoon.
NTNU, April 2013 with collaborators: Salman A. Silotri (NCTU), Chung-Hou Chung (NCTU, NCTS) Sung Po Chao Helical edge states transport through a quantum.
NTNU 2011 Dimer-superfluid phase in the attractive Extended Bose-Hubbard model with three-body constraint Kwai-Kong Ng Department of Physics Tunghai University,
Kondo Effect Ljubljana, Author: Lara Ulčakar
Magnetic Field: Classical Mechanics Aharonov-Bohm effect
Quantum entanglement, Kondo effect, and electronic transport in
Robert Konik, Brookhaven National Laboratory Hubert Saleur,
Conductance of nanosystems with interaction
Conductance through coupled quantum dots
Conductance through coupled quantum dots
Persistent spin current
Presentation transcript:

A. Ramšak* J. Mravlje T. Rejec* R. Žitko J. Bonča* The Kondo effect in multiple quantum dot systems and deformable molecules Department of Physics Faculty of Mathematics and Physics University of Ljubljana *

Outline (1) Conductance (2) Kondo in a single quantum dot (3) Methods (4) Double quantum dots (5) Triple quantum dots (6) Deformable molecules (7) Center-of-mass motion (8) Summary

Conductance

Conductance

Non-interacting systems : U=0

The Anderson model : U > 0

The Kondo effect in a quantum dot

1 “Ring system”

“Open system”

the GS energy of a large ring system is an universal function of flux the GS energy of a large ring system is an universal function of flux T. Rejec and A. Ramšak, PRB 68, (2003); (2003) IF open system is Fermi liquid IF open system is Fermi liquid

Linear conductance from the ground-state energy See also: J. Favand and F. Mila (Phys. J. 1998); O. Sushkov (PRB 2001); R. Molina et al. (PRB 2003)

Linear conductance from the ground-state energy

Aharonov – Bohm rings Broken time-reversal symmetry T. Rejec and A. Ramšak, PRB 68, (2003)

The Kondo effect in a quantum dot U=0 numerical tests…

The Kondo effect in a quantum dot: finite temperature U=0 high T low T

The Kondo effect in a quantum dot: finite temperature high T low T

The Kondo effect in a quantum dot: finite temperature high T low T

Fingerprints of Kondo…

Chan et al, Nanotechnology 15, 609 (2004) Vidan et al, Applied Phys. Lett. 85, 3602 (2004) Electrostatic gates QD Elzerman et al, PRB 67, (2003) QD Multiple quantum dot systems

Double quantum dot

J. Mravlje, A. Ramšak, and T. Rejec, Phys. Rev. B 73, (R) (2006)

Double quantum dot 2 Kondo AFM 1 Kondo t t

Double quantum dot 2 Kondo AFM 1 Kondo t t

Double quantum dot 2 Kondo AFM 1 Kondo t t

Other topologies: local singlet vs the Kondo effect A.Ramšak, J. Mravlje, R. Žitko, and J. Bonča, quant-ph/

Thermal equilibrium: A-B spin corelations

Zero magnetic field, thermal equilibrium A B

Zero magnetic field, temperature A B

A B

A B

A B

Triple quantum dot

Deformable molecules e

e

H. Park et al. Nature 407 (2000) e Change in: local energy hopping matrix elements

Modeling

Isolated molecule: molecule attached to the leads: Lang & Firsov transformation: the result: Reduction of U and narrowing of the level-width A.C. Hewson and D.M. News J.Phys C 13 (1980) K. Schönhammer and O. Gunnarsson PRB 30 (1984) Old knowledge …

decrease negative U: A.Taraphder and P. Coleman, PRL 66, 2814 (1991).

J. Mravlje, A. Ramšak, and T. Rejec, PRB 72, (R) (2005); See also: P.S. Cornaglia, D.R. Grempel, and H. Ness, Phys. Rev. B 71, (2005), A. Mitra, I. Aleiner, and A.J. Millis, Phys. Rev. B 79, (2004).

Molecules with a center of mass motion J. Mravlje, A. Ramšak, and T. Rejec, submitted to PRB

Molecules with a center of mass motion

Friedel sum rule:

Molecules with a center of mass motion Friedel sum rule:

Molecules with a center of mass motion A B

Summary Linear conductance at T=0 can then be extracted from the GS energy: The Kondo effect: Low temperature destiny of quantum dots

ad summary…

Formulae are exact IF the system is Fermi liquid note: linear conductance zero temperature non-interacting single-channel leads

Fisher – Lee relation … Conductance formalisms non-equilibrium transport: T ≠ 0, V ≠ 0 U = 0 Landauer – Büttiker formula linear response regime: T ≠ 0, V ~ 0zero-temperature linear response: T = 0, V ~ 0 U ≠ 0 Meir – Wingreen formula In Fermi liquid systems Kubo formula

Proof of the method Step 1. Conductance of a Fermi liquid system at T=0 Kubo T=0 define (n.i.: Fisher-Lee) ‘Landauer’

Step 2. Quasiparticle hamiltonian (Landau Fermi liquid)

Step 3. Quasiparticles in a finite system N

Step 4. Validity of the conductance formulas