M.Lintz, ICSO 2008 2 mode laser telemetry 1 "T2M": two-mode telemetry for high accuracy absolute distance measurement M. Lintz, C. Courde, A. Brillet,

Slides:



Advertisements
Similar presentations
Gravitational Wave Astronomy Dr. Giles Hammond Institute for Gravitational Research SUPA, University of Glasgow Universität Jena, August 2010.
Advertisements

Department ArtemisObservatoire de la Cote d'Azur1 A Sagnac interferometer with frequency modulation for sensitive saturated absorption (and applications.
ILIAS 5-6/11/2004 WG T2 Task T2 (WG 11) AIM: exact definition (theoretical and experimental) of photo-thermal noise PARTICIPANTS INFN (AURIGA group; also.
Status of the Virgo Commissioning G.Losurdo – INFN Firenze/Urbino for the Virgo Collaboration.
Beam-based Measurements of HOMs in the HTC Adam Bartnik for ERL Team, Daniel Hall, John Dobbins, Mike Billing, Matthias Liepe, Ivan Bazarov.
Cascina, January 25th, Coupling of the IMC length noise into the recombined ITF output Raffaele Flaminio EGO and CNRS/IN2P3 Summary - Recombined.
ICSO High Accuracy Laser Telemetry for Kilometric Distance Measurement in Space C.COURDE, H. PHUNG Duy, M. LINTZ, A. BRILLET ARTEMIS, Observatoire.
A two-mode range meter for nanometric accuracy (& picometric resolution) long distance measurements in space D. H. Phung 1, C. Courde 1, A.Brillet 1, C.Alexandre.
Lock-in amplifiers Signals and noise Frequency dependence of noise Low frequency ~ 1 / f –example: temperature (0.1 Hz), pressure.
ESA/DLR Blue Book Proposal High-Flux Scenario
Results The optical frequencies of the D 1 and D 2 components were measured using a single FLFC component. Typical spectra are shown in the Figure below.
RF / Laser Timing for 5/20/14 Frisch. Requirements, Jitter and Drift Looking for 100fs Pk-Pk measurements – 30fs RMS. (state of the art) Jitter:
SURVEYING II UNIT IV PRESENTATION II.
Laser Offset Stabilization for Terahertz (THz) Frequency Generation Kevin Cossel Dr. Geoff Blake California Institute of Technology Kevin Cossel Dr. Geoff.
Danielle Boddy Durham University – Atomic & Molecular Physics group Laser locking to hot atoms.
MIT Ultrafast Optics & Quantum Electronics Group Femtosecond Technologies for Optical clocks, Timing Distribution and RF Synchronization J.-W. Kim, F.
LiCAS Project: FSI Overview Richard Bingham, Edward Botcherby, Paul Coe, John Green, Grzegorz Grzelak, Ankush Mitra, John Nixon, Armin Reichold University.
Initial Calibration and Stability Results from the LiCAS RTRS FSI System John Dale for the LiCAS Collaboration IWAA February 2008.
Atacama Large Millimeter/submillimeter Array Expanded Very Large Array Robert C. Byrd Green Bank Telescope Very Long Baseline Array Green Bank Laser Rangefinders.
Laser to RF synchronisation A.Winter, Aachen University and DESY Miniworkshop on XFEL Short Bunch Measurement and Timing.
LumiCal Alignment System Status report Leszek Zawiejski, Tomasz Wojtoń, Arkadiusz Moszczyński Institute of Nuclear Physics PAN, Cracow 25th FCAL Collaboration.
MONALISA David Urner, Armin Reichold, Paul Coe, Matthew Warden, Geoff Rayner Monitoring Alignment and Stabilisation with high Accuracy (Previously known.
M.Lintz, Laser ranging OHP Colloq.23-27/09/ work on absolute laser ranging of long distances at laboratoire ARTEMIS two posters: µm scale accuracy,
WP06_AntennaIF. WP06_AntennaIF 3 principal modules switch amplifier (= ATA ‘PAM’) –includes attenuators (0-60 dB), power detector, and bias tee for the.
Q09/2001 The GEO 600 Laser System LIGO-G Z V. Quetschke°, M. Kirchner°, I.Zawischa*, M. Brendel*, C. Fallnich*, S. Nagano +, B. Willke° +, K.
Single-shot characterization of sub-15fs pulses with 50dB dynamic range A. Moulet 1, S.Grabielle 1, N.Forget 1, C.Cornaggia 2, O.Gobert 2 and T.Oksenhendler.
1 Gravitational wave interferometer OPTICS François BONDU CNRS UMR 6162 ARTEMIS, Observatoire de la Côte d’Azur, Nice, France EGO, Cascina, Italy May 2006.
Concepts for Combining Different Sensors for CLIC Final Focus Stabilisation David Urner Armin Reichold.
Servos Servos are everywhere. Elements of servo System -- to be controlled Sensor or detector -- measure quantity to be controlled Reference -- desired.
Current progress of developing Inter-satellite laser interferometry for Space Advanced Gravity Measurements Hsien-Chi Yeh School of Physics Huazhong University.
Katrin Dahl for the AEI 10 m Prototype team March 2010 – DPG Hannover Q29.1 Stabilising the distance of 10 m separated.
This teaching material is a part of e-Photon/ONe Master study in Optical Communications and Networks Course and module: Author(s): No part of this presentation.
ANATAC Meeting Line Length Correction Status 2004-Apr-23.
1 Absolute distance metrology: - sweeping wavelength - frequency comb referenced 2 interferometric system P. Pfeiffer* L. Perret** N. Schuhler*** * Université.
IPBSM status and plan ATF project meeting M.Oroku.
1 Noise sources at high frequency in Virgo E. Tournefier (LAPP-CNRS) ILAS WG1 meeting, Hannover December 12 th,2005 Recycled ITF sensitivities Noise sources.
Arm Length Stabilisation for Advanced Gravitational Wave Detectors Adam Mullavey, Bram Slagmolen, Daniel Shaddock, David McClelland Peter Fritschel, Matt.
__–––– Sensitivity Scaling of Dual Frequency Combs Ian Coddington, Esther Baumann, Fabrizio Giorgetta, William Swann, Nate Newbury NIST, Boulder, CO
M.Lintz, Télémétrie Laser Atelier Télescopes NG 27-28/03/ Laser ranging at the nm precision level: The two mode interference measurement in the Iliade.
Lineshape and Sensitivity of Spectroscopic Signals of N 2 + in a Positive Column Collected Using NICE-OHVMS Michael Porambo, Andrew Mills, Brian Siller,
LISA R&D activities at APC A status report Hubert Halloin.
Pre-stabilized laser (PSL) for AdV Scope of the system Main tasks Requirements Reference solution and status of the design Plans towards completion Technical.
1 1.Definition 2.Deliverables 3.Status of preliminary design 4.Risks 5.Tasks to be done 6.Decisions to be taken 7.Required simulations 8.Planning ISC workshop:
Status of the Advanced LIGO PSL development LSC Virgo meeting, Caltech, March 2008 LIGO G Z Benno Willke for the PSL team.
Abstract The Hannover Thermal Noise Experiment V. Leonhardt, L. Ribichini, H. Lück and K. Danzmann Max-Planck- Institut für Gravitationsphysik We measure.
Status of the Advanced LIGO PSL development LSC meeting, Baton Rouge March 2007 G Z Benno Willke for the PSL team.
Optical power variation only Amplitude to phase conversion issue in telemetry CONTEXT/OBJECTIVES: This work was realized within JRPs « SURVEYING »(SIB-60)
Collimator BPM electronics – Results from the lab, SPS and LHC
1 Virgo Commissioning Status WG1 meeting Potsdam, 21 st July 2006.
Paolo La Penna ILIAS N5-WP1 meeting Commissioning Progress Hannover, July 2004 VIRGO commissioning progress report.
IP BPM’s for ATF2 Vladimir Vogel KEK May30, 2005 Third Mini-Workshop on Nano Project at ATF.
FREQUENCY-AGILE DIFFERENTIAL CAVITY RING-DOWN SPECTROSCOPY
Tze-Wei Liu Y-C Hsu & Wang-Yau Cheng
MONALISA Update David Urner ATF2 Meeting Dec
Champaign, June 2015 Samir Kassi, Johannes Burkart Laboratoire Interdisciplinaire de Physique, Université Grenoble 1, UMR CNRS 5588, Grenoble F-38041,
ST7 Interferometer LIGO-G Z1 The ST7 Interferometer Andreas Kuhnert Robert Spero Jet Propulsion Laboratory California Institute of Technology.
10-meter Interferometer Results M. Woods (special thanks to Steve Myers and Tim Slaton) Jan. 31, 2000 Commissioning Setup System Noise Monte Carlo simulation.
The Proposed Holographic Noise Experiment Rainer Weiss, MIT On behalf of the proposing group Fermi Lab Proposal Review November 3, 2009.
Date of download: 6/2/2016 Copyright © 2016 SPIE. All rights reserved. Dye ring laser control, spectroscopic, and locking feedback system showing overlapping,
Date of download: 7/1/2016 Copyright © 2016 SPIE. All rights reserved. (a) Simplified sketch of the setup. Some beam guiding mirrors, optical isolators,
Date of download: 9/17/2016 Copyright © 2016 SPIE. All rights reserved. Top: Schematic representation of input and output signals. LF-intensity-modulated.
bKAGRA PSL Design Study
Multiple Isotope Magneto-Optical Trap from a Single Diode Laser
Methods of transfer of ultra-stable frequencies to radio telescope
RF Synchronisation Issues
Lock-in amplifiers
Optoelectronic Microwave Oscillators
DESIGN AND FIRST EXPERIENCE WITH THE FERMI SEED LASER
David Urner, Armin Reichold , Paul Coe, Matthew Warden, Geoff Rayner
ATCA Wideband Continuum Operation
Presentation transcript:

M.Lintz, ICSO mode laser telemetry 1 "T2M": two-mode telemetry for high accuracy absolute distance measurement M. Lintz, C. Courde, A. Brillet, C. N. Man ARTEMIS, Observatoire de la Côte d'Azur NICE Funded by CNES PhD grant: Thales Alenia space and Région Provence-Alpes- Côte d'Azur Towards nanometric accuracy without interferometry

M.Lintz, ICSO mode laser telemetry 2 formation flights: need for high accuracy distance measurements over hundreds of meters 1µm as a first step...device small enough to get onboard a SC

M.Lintz, ICSO mode laser telemetry 3 - tune the frequency to get zero phase and measure F - then L meas -L ref = K  = K c/F (K integer) - tune to next zero L meas -L ref = (K+1) c/F'  K= F / (F'-F) HIGH ACCURACY The modulated laser beam technique: THE BASIC PRINCIPLE !! drifts  =c/F high frequency F phase difference L meas L ref...is not the best one! (with cyclic errors)

M.Lintz, ICSO mode laser telemetry 4 Polarisation controller polarisation analysis  PBS (x,y) phase signal  synth =c/F F ~13,01GHz 45° 13GHz phasemeter  (meas)  (ref) polarisation switching ~ kHz meas ref meas   ref unchanged when polarisation switching high accuracy phase zero tuned  (ref)-  (meas) +offset  (meas)-  (ref) +offset improved version

M.Lintz, ICSO mode laser telemetry 5 telemeter signal T2M (Two-mode telemeter) set-up Phase lock RF 10MHz slave laser +F, F=13GHz+10MHz master laser pol. contr. pol. analysis LI lock 2 kHz  AD 9901 lock  10MHz ref meas red: laser beams green: optical fibres black: HF (13GHz) blue: RF (10MHz) purple: DC-100kHz ~13GHz VCO 13,01GHz lock freq.meas  telemeter PBS (x,y)

M.Lintz, ICSO mode laser telemetry 6 The XOR phase-metre In 1In 2 OUT  phase-to-amplitude coupling 2  for a 20% imbalance. in1/in2 - no polarisation switch - L meas scanned over 25mm 25 mm vs L VM phase signal

M.Lintz, ICSO mode laser telemetry 7 20µm 1mn Signal zeroes: the good ones, the bad ones...  BAD!  GOOD!noise subtraction! - "integer zero": L M -L R = Kc/F - "1/2-integer zero": L M -L R =(K+1/2)c/F 1/2integer zero integer zero

M.Lintz, ICSO mode laser telemetry 8 noise / systematics ? Polarisation change in the corner cubes? PBS Extinction defect? HF/RF crosstalk? Photodiode response? Optical return from photodiodes? Amplitude to phase coupling? Defect of the polarisation switch? Lock en phase RF 10MHz fixed frequency laser slave laser +F, F=13GHz+10MHz pol. control pol. analysis DS lock qq kHz  AD 9901 lock  10MHz ref meas. VCO 13GHz 13,01GHz NO YES YES, 1µm NO, not on "good" zeroes PBS cube YES ~5µm

M.Lintz, ICSO mode laser telemetry 9 20µm 1mn The polarisation routing defect - defect:  1% in intensity -  10% in AMPLITUDE the "noise" is due to the change of the interference order (L meas -L ref )/ opt with time  admixture (interference): meas +  ref, ref -  meas and  reverses with the polarisation switch! and amplitude-to-phase coupling RMS amplitude of the 10 MHz signal of Phd 1 Telemeter signal pol. control pol. analysis

M.Lintz, ICSO mode laser telemetry 10 (corrected) telemeter signal: long term stability "ref" VM "meas" "zero distance" stability test RMS Telemeter (raw) Telemeter (corrected)

M.Lintz, ICSO mode laser telemetry 11 Telemeter data: coherency (8m path) 2) Kc/F should be equal to (K+1)c/F'...=(K+N)c/F (N) etc... 1) K  F/(F'-F) has to be an integer distance to the next integer 5µm L(mm) with stat. error bars time series 2µm L(mm), selected data with low stat dispersion time series

M.Lintz, ICSO mode laser telemetry 12 Telemeter data: stability (8m path) Long term (in)stability in the 10µm range probably thermal expansion of the opt. breadboard To be checked in the future with separate telemeter (heretodyne interferometry) what about "nanometric" ?? 10µm "sub-micron"

M.Lintz, ICSO mode laser telemetry 13 T2M: how to get "nanometric" ? Signal amplitude problem: - improve polarisation controller (large drifts in the piezo squeezers) - reduce the residual amplitude effect (intensity control loop) - improve the phase-meter Optical return from the photodiodes: - switch to FC/APC, with -35dB return (instead of FC/PC, with -15dB return) - insert optical isolators - good AR coating for the collimator Goal: 10nm accuracy - without interferometry! - simple setup! closed loop noise on the telemeter signal (µm/  Hz) 1nm/  Hz

M.Lintz, ICSO mode laser telemetry 14