Death of Stars I Physics 113 Goderya Chapter(s): 13 Learning Outcomes:

Slides:



Advertisements
Similar presentations
Notes 30.2 Stellar Evolution
Advertisements

Black Body Radiation Physics 105 Goderya. Need for Quantum Physics Classical mechanics and relativity cannot explain Blackbody Radiation –The electromagnetic.
The Deaths of Stars What happens when a star uses up all its hydrogen in its core? What is the evidence that stars really evolve? How will the sun die?
Susan CartwrightOur Evolving Universe1 The Deaths of Stars n What happens to stars when the helium runs out? l l do they simply fade into oblivion? l l.
Stellar Evolution. Evolution on the Main Sequence Zero-Age Main Sequence (ZAMS) MS evolution Development of an isothermal core: dT/dr = (3/4ac) (  r/T.
Life Cycle of Stars.
Stellar Death Astronomy 315 Professor Lee Carkner Lecture 14 “I am glad we do not have to try to kill the stars. … Imagine if a man each day should have.
Summary of Post-Main-Sequence Evolution of Sun-Like Stars M < 4 M sun Fusion stops at formation of C,O core. C,O core becomes degenerate Core collapses;
Lecture 26: The Bizarre Stellar Graveyard: White Dwarfs and Neutron Stars.
Chapter 10 The Deaths of Stars.
Stellar Evolution: The Deaths of Stars Chapter Twenty-Two.
PHYS The Main Sequence of the HR Diagram During hydrogen burning the star is in the Main Sequence. The more massive the star, the brighter and hotter.
Fill in the chart when you see a yellow star. Take notes on the stars and events as well.
The Deaths of Stars Chapter 13. The End of a Star’s Life When all the nuclear fuel in a star is used up, gravity will win over pressure and the star will.
28,000 light years 200 billion stars Milky Way Galaxy.
Chapter 12 Stellar Evolution. Infrared Image of Helix Nebula.
Note that the following lectures include animations and PowerPoint effects such as fly ins and transitions that require you to be in PowerPoint's Slide.
The Deaths of Stars As you read this chapter, take a moment to be astonished and proud that the human race knows how stars die. Finding the masses of stars.
Slide 1 Stellar Evolution M ~4 P R O T O S T A R M a i n S e q u e n c e D G I A N T Planetary Supernova Nebula W h i t e D w a r f B r o w n D w a r f.
The Lives of Stars Chapter 12. Life on Main-Sequence Zero-Age Main Sequence (ZAMS) –main sequence location where stars are born Bottom/left edge of main.
The origin of the (lighter) elements The Late Stages of Stellar Evolution Supernova of 1604 (Kepler’s)
Stellar Deaths Novae ans Super Novae 16. Hydrostatic Equilibrium Internal heat and pressure from fusion pushes outward Gravity pulling mass inward Two.
The Formation and Structure of Stars
Slide 1 Death of Stars “All hope abandon, ye who enter here” Dante.
Astronomy Picture of the Day. Recall: Luminosity - Intrinsic property of a star. Apparent Brightness – the brightness we perceive a star to be from Earth.
The Stellar Graveyard.
The Deaths of Stars Chapter 10. Mass Transfer in Binary Stars In a binary system, each star controls a finite region of space, bounded by the Roche Lobes.
Class 17 : Stellar evolution, Part I Evolution of stars of various masses Red giants. Planetary nebulae. White dwarfs. Supernovae. Neutron stars.
The Deaths of Stars Chapter 10. Evolution off the Main Sequence: Expansion into a Red Giant Hydrogen in the core completely converted into He: H burning.
NOT THOSE TYPES OF STARS! LIFE CYCLE OF STARS WHAT IS A STAR? Star = ball of plasma undergoing nuclear fusion. Stars give off large amounts of energy.
Everything you always wanted to know about stars….
Degenerate Matter and White Dwarfs. Summary of Post-Main-Sequence Evolution of Sun-Like Stars M < 4 M sun Fusion stops at formation of C,O core. C,O core.
Supernovae and Gamma-Ray Bursts. Summary of Post-Main-Sequence Evolution of Stars M > 8 M sun M < 4 M sun Subsequent ignition of nuclear reactions involving.
Stellar Fuel, Nuclear Energy and Elements How do stars shine? E = mc 2 How did matter come into being? Big bang  stellar nucleosynthesis How did different.
Life Cycle of Stars. Stars are born in Nebulae Vast clouds of gas and dust Composed mostly of hydrogen and helium Some cosmic event triggers the collapse.
The Life Cycles of Stars
The Death of Stars Stellar Recycling. The fate of the Sun Eventually fusion will exhaust the hydrogen supply from the center of the Sun. Internal pressure.
Review for Quiz 2. Outline of Part 2 Properties of Stars  Distances, luminosities, spectral types, temperatures, sizes  Binary stars, methods of estimating.
The Deaths of Stars Chapter 10. Evidence that Stars Die When all the nuclear fuel in a star is used up, gravity will win over pressure and the star will.
Ch Stellar Evolution. Nebula—a cloud of dust and gas. 70% Hydrogen, 28% Helium, 2% heavier elements. Gravity pulls the nebula together; it spins.
Stars By: Mary Aragon Theory of Relativity. What are stars?  Enormous balls of gas  Made mostly of hydrogen and helium  Constant nuclear process (fusion)
Chapter 12 Star Stuff Evolution of Low-Mass Stars 1. The Sun began its life like all stars as an intersteller cloud. 2. This cloud collapses due to.
Life Cycle of Stars Birth Place of Stars:
Life Cycle of a Star A journey through it’s birth ‘til it’s death. By Anna, Damon, Shannon, Jon, and Patricia.
Life Cycle of Stars.
Recap: Death of Stars: Low and Medium Mass Red Giant Main Sequence Star Planetary Nebula White Dwarf Black Dwarf ?? Red Dwarf Low Mass Medium Mass.
Death of Stars II Physics 113 Goderya Chapter(s): 14
9. Evolution of Massive Stars: Supernovae. Evolution up to supernovae: the nuclear burning sequence; the iron catastrophe. Supernovae: photodisintigration;
Ch. 10 Stellar Old Age.
Red Giant Phase to Remnant (Chapter 10). Student Learning Objective Describe or diagram the evolutionary phases from the beginning of stellar formation.
Stellar Evolution. Birth Main Sequence Post-Main Sequence Death.
The life cycle of stars from birth to death
STARS.
The Deaths of Stars Please press “1” to test your transmitter.
BEYOND OUR SOLAR SYSTEM CHAPTER 25 Part II. INTERSTELLAR MATTER NEBULA BRIGHT NEBULAE EMISSION NEBULA REFLECTION NEBULA SUPERNOVA REMANTS DARK NEBULAE.
Universe Tenth Edition Chapter 20 Stellar Evolution: The Deaths of Stars Roger Freedman Robert Geller William Kaufmann III.
Part 1: Star Birth. A World of Dust We are interested in this “interstellar medium” because these dense, interstellar clouds (nebulae) are the birth place.
Stellar Evolution Chapters 16, 17 & 18. Stage 1: Protostars Protostars form in cold, dark nebulae. Interstellar gas and dust are the raw materials from.
Stellar Evolution Continued…. White Dwarfs Most of the fuel for fusion is used up Giant collapses because core can’t support weight of outer layers any.
Chapter 11 The Death of High Mass Stars
Supernova explosions. The lives of stars Type I supernovae –Destruction of white dwarfs Type II supernovae –Core collapse of massive stars What’s left.
Note that the following lectures include animations and PowerPoint effects such as fly ins and transitions that require you to be in PowerPoint's Slide.
Stellar Evolution Chapters 16, 17 & 18.
Evolution of the Solar System
Note that the following lectures include animations and PowerPoint effects such as fly ins and transitions that require you to be in PowerPoint's Slide.
Intrinsic in⋅trin⋅sic
The Deaths of Stars.
Chapter 13 Star Stuff.
Stellar Evolution.
Presentation transcript:

Death of Stars I Physics 113 Goderya Chapter(s): 13 Learning Outcomes:

The End of a Star’s Life When all the nuclear fuel in a star is used up, gravity will win over pressure and the star will die. High-mass stars will die first, in a gigantic explosion, called a supernova. Less massive stars will die in a less dramatic event, called a nova

The Final Breaths of Sun-Like Stars: Planetary Nebulae The Helix Nebula Remnants of stars with ~ 1 – a few M sun Radii: R ~ light years Expanding at ~10 – 20 km/s ( Doppler shifts) Less than 10,000 years old Have nothing to do with planets! 

The Formation of Planetary Nebulae The Ring Nebula in Lyra Two-stage process: Slow wind from a red giant blows away cool, outer layers of the star Fast wind from hot, inner layers of the star overtakes the slow wind and excites it => Planetary Nebula

The Dumbbell Nebula in Hydrogen and Oxygen Line Emission

Planetary Nebulae Often asymmetric, possibly due to Stellar rotation Magnetic fields Dust disks around the stars The Butterfly Nebula

The Remnants of Sun-Like Stars: White Dwarfs Sunlike stars build up a Carbon-Oxygen (C,O) core, which does not ignite Carbon fusion. He-burning shell keeps dumping C and O onto the core. C,O core collapses and the matter becomes degenerate.  Formation of a White Dwarf

Nova Explosions Nova Cygni 1975 Hydrogen accreted through the accretion disk accumulates on the surface of the WD  Very hot, dense layer of non-fusing hydrogen on the WD surface  Explosive onset of H fusion  Nova explosion

White Dwarfs Degenerate stellar remnant (C,O core) Extremely dense: 1 teaspoon of WD material: mass ≈ 16 tons!!! White Dwarfs: Mass ~ M sun Temp. ~ 25,000 K Luminosity ~ 0.01 L sun Chunk of WD material the size of a beach ball would outweigh an ocean liner!

White Dwarfs in Binary Systems Binary consisting of WD + MS or Red Giant star => WD accretes matter from the companion Angular momentum conservation => accreted matter forms a disk, called accretion disk. Matter in the accretion disk heats up to ~ 1 million K => X-ray emission => “X-ray binary”. T ~ 10 6 K X-ray emission

The Deaths of Massive Stars: Supernovae Final stages of fusion in high-mass stars (> 8 M sun ), leading to the formation of an iron core, happen extremely rapidly: Si burning lasts only for ~ 1 day. Iron core ultimately collapses, triggering an explosion that destroys the star: A Supernova

Observations of Supernovae Supernovae can easily be seen in distant galaxies.

Supernova Remnants The Cygnus Loop The Veil Nebula The Crab Nebula: Remnant of a supernova observed in a.d Cassiopeia A Optical X- rays

The Famous Supernova of 1987: SN 1987A BeforeAt maximum Unusual type II Supernova in the Large Magellanic Cloud in Feb. 1987

The Remnant of SN 1987A Ring due to SN ejecta catching up with pre-SN stellar wind; also observable in X-rays.

Local Supernovae and Life on Earth Nearby supernovae (< 50 light years) could kill many life forms on Earth through gamma radiation and high-energy particles. At this time, no star capable of producing a supernova is < 50 ly away. Most massive star known (~ 100 solar masses) is ~ 25,000 ly from Earth.

Chandrashekar Limit Low mass stars: Fusion through p-p chain. H to C High mass stars: Fusion through p-p chain and CNO process. H - Fe M core White Dwarf 1.4M sun Neutron Star 3.0 M sun Black Hole