Intelligent Database Systems Lab Presenter: HONG, CHIA-TSE Authors: Yen-Hsien Lee, Chih-Ping Wei, Tsang-Hsiang Cheng, Ching-Ting Yang 2012. DSS Nearest-neighbor-based.

Slides:



Advertisements
Similar presentations
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 A 24-h forecast of solar irradiance using artificial neural.
Advertisements

Intelligent Database Systems Lab Presenter: WU, JHEN-WEI Authors: Jorge Gorricha, Victor Lobo CG Improvements on the visualization of clusters in.
國立雲林科技大學 National Yunlin University of Science and Technology Predicting adequacy of vancomycin regimens: A learning-based classification approach to improving.
Lazy vs. Eager Learning Lazy vs. eager learning
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology A novel document similarity measure based on earth mover’s.
Intelligent Database Systems Lab Presenter : YAN-SHOU SIE Authors : Christos Ferles ∗, Andreas Stafylopatis NN Self-Organizing Hidden Markov Model.
Intelligent Database Systems Lab Presenter: YU-TING LU Authors: Laurens van der Maaten and Geoffrey Hinton ML Visualizing non-metric similarities.
Intelligent Database Systems Lab Presenter: NENG-KAI, HONG Authors: G. PANKAJ JAIN, VARADRAJ P. GURUPUR, JENNIFER L. SCHROEDER, AND EILEEN D. FAULKENBERRY.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Fast exact k nearest neighbors search using an orthogonal search tree Presenter : Chun-Ping Wu Authors.
Intelligent Database Systems Lab Presenter: MIN-CHIEH HSIU Authors: NHAT-QUANG DOAN ∗, HANANE AZZAG, MUSTAPHA LEBBAH 2013 NN Growing self-organizing trees.
Intelligent Database Systems Lab Presenter : NENG-KAI, HONG Authors : CÉSAR DOMÍNGUEZ, ARTURO JAIME 2014, CE Database design learning: A project-based.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Evaluation of novelty metrics for sentence-level novelty mining Presenter : Lin, Shu-Han Authors : Flora.
Presenter : Ching-ting Lin Instructor: Ming-puu Chen Developing a Usability Evaluation Method for E-learning Application: From Functional Usability to.
Intelligent Database Systems Lab Presenter : Chang,Chun-Chih Authors : Miin-Shen Yang a*, Wen-Liang Hung b, De-Hua Chen a 2012, FSS Self-organizing map.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. OpinionMiner: A Novel Machine Learning System for Web Opinion Mining and Extraction Presenter : Jiang-Shan.
Intelligent Database Systems Lab Presenter : JIAN-REN CHEN Authors : Sheng-Tun Li a,b,*, Fu-Ching Tsai a 2013, KBS A fuzzy conceptualization model for.
Intelligent Database Systems Lab Advisor : Dr. Hsu Graduate : Chien-Ming Hsiao Author : Bing Liu Yiyuan Xia Philp S. Yu 國立雲林科技大學 National Yunlin University.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 An Empirical Study of Learning from Imbalanced Data Using.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Automatic Recommendations for E-Learning Personalization.
Cube Kohonen Self-Organizing Map (CKSOM) Model
Intelligent Database Systems Lab N.Y.U.S.T. I. M. An IPC-based vector space model for patent retrieval Presenter: Jun-Yi Wu Authors: Yen-Liang Chen, Yu-Ting.
Intelligent Database Systems Lab Presenter : Kung, Chien-Hao Authors : Yoong Keok Lee and Hwee Tou Ng 2002,EMNLP An Empirical Evaluation of Knowledge Sources.
Intelligent Database Systems Lab Presenter : Chang,Chun-Chih Authors : Youngjoong Ko, Jungyun Seo 2009, IPM Text classification from unlabeled documents.
Intelligent Database Systems Lab Presenter : JIAN-REN CHEN Authors : Cihan Kaleli, Huseyin Polat 2012, KBS Privacy-preserving SOM-based recommendations.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. A fast nearest neighbor classifier based on self-organizing incremental neural network (SOINN) Neuron.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology A k-mean clustering algorithm for mixed numeric and categorical.
Intelligent Database Systems Lab Presenter : Kung, Chien-Hao Authors : Medhdi Khashei, Mehdi Bijari 2011, ASOC A novel hybridization of artificial neural.
Intelligent Database Systems Lab Presenter: Wu, Jhen-Wei Authors: Fabian Bürger, Josef Pauli ICPRAM. Representation Optimization with Feature Selection.
Intelligent Database Systems Lab Presenter : Chang,Chun-Chih Authors : CHRISTOS BOURAS, VASSILIS TSOGKAS 2012, KBS A clustering technique for news articles.
Intelligent Database Systems Lab Presenter : Chang,Chun-Chih Authors : David Milne *, Ian H. Witten 2012, AI An open-source toolkit for mining Wikipedia.
Intelligent Database Systems Lab Presenter : Kung, Chien-Hao Authors : Eghbal G. Mansoori 2011,IEEE FRBC: A Fuzzy Rule-Based Clustering Algorithm.
Intelligent Database Systems Lab Presenter : BEI-YI JIANG Authors : HAI V. PHAM, ERIC W. COOPER, THANG CAO, KATSUARI KAMEI INFORMATION SCIENCES Hybrid.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. The application of SOM as a decision support tool to identify AACSB peer schools Presenter : Chun-Ping.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Unsupervised word sense disambiguation for Korean through the acyclic weighted digraph using corpus and.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Psychiatric document retrieval using a discourse-aware model Presenter : Wu, Jia-Hao Authors : Liang-Chih.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. 1 Visualization of multi-algorithm clustering for better economic decisions - The case of car pricing.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 An initialization method to simultaneously find initial.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology O( ㏒ 2 M) Self-Organizing Map Algorithm Without Learning.
Intelligent Database Systems Lab Presenter: CHANG, SHIH-JIE Authors: Luca Cagliero, Paolo Garza 2013.DKE. Improving classification models with taxonomy.
Introduction to Data Mining by Yen-Hsien Lee Department of Information Management College of Management National Sun Yat-Sen University March 4, 2003.
Intelligent Database Systems Lab Presenter: CHANG, SHIH-JIE Authors: Longzhuang Li, Yi Shang, Wei Zhang 2002.ACM. Improvement of HITS-based Algorithms.
Intelligent Database Systems Lab Presenter : CHANG, SHIH-JIE Authors : Ya-Han Hu, Fan Wu a, Chia-Lun Lo, Chun-Tien Tai b 2012.AIM. Predicting warfarin.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Direct mining of discriminative patterns for classifying.
Intelligent Database Systems Lab Presenter : Chuang, Kai-Ting Authors : Rafael Odon de Alencar, Clodoveu Augusto Davis Jr., Marcos André Gonçalves 2010,
Intelligent Database Systems Lab Presenter: NENG-KAI, HONG Authors: HUAN LONG A, ZIJUN ZHANG A, ⇑, YAN SU 2014, APPLIED ENERGY Analysis of daily solar.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Towards comprehensive support for organizational mining Presenter : Yu-hui Huang Authors : Minseok Song,
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Predicting corporate bankruptcy using a self-organizing map: An empirical study to improve the forecasting.
Intelligent Database Systems Lab Presenter: YU-TING LU Authors: Christopher C. Yang and Tobun Dorbin Ng TSMCA Analyzing and Visualizing Web Opinion.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Text Classification Improved through Multigram Models.
Musical Genre Categorization Using Support Vector Machines Shu Wang.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Dual clustering : integrating data clustering over optimization.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Advisor : Dr. Hsu Presenter : Chien-Shing Chen Author: Gustavo.
Intelligent Database Systems Lab Presenter: CHANG, SHIH-JIE Authors: Tao Liu, Zheng Chen, Benyu Zhang, Wei-ying Ma, Gongyi Wu 2004.ICDM. Improving Text.
Intelligent Database Systems Lab Presenter: YU-TING LU Authors: Junping Zhang, Hua Huang and Jue Wang IEEE INTELLIGENT SYSTEMS Manifold Learning.
Intelligent Database Systems Lab Presenter: YU-TING LU Authors: Vittorio Carlei, Massimiliano Nuccio PRL Mapping industrial patterns in spatial agglomeration:
Intelligent Database Systems Lab N.Y.U.S.T. I. M. An Integrated Machine Learning Approach to Stroke Prediction Presenter: Tsai Tzung Ruei Authors: Aditya.
Intelligent Database Systems Lab Presenter : Fen-Rou Ciou Authors : Hamdy K. Elminir, Yosry A. Azzam, Farag I. Younes 2007,ENERGY Prediction of hourly.
Intelligent Database Systems Lab Presenter: HONG, CHIA-TSE Authors:Yang Liu, Yan Liu, Keith C. C. Chan, Kien A. Hua TONNAL. Hybrid Manifold Embedding.
Intelligent Database Systems Lab Presenter : Chang,Chun-Chih Authors : Emilio Corchado, Bruno Baruque 2012 NeurCom WeVoS-ViSOM: An ensemble summarization.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Visualizing social network concepts Presenter : Chun-Ping Wu Authors :Bin Zhu, Stephanie Watts, Hsinchun.
Intelligent Database Systems Lab Presenter : YU-TING LU Authors : Hsin-Chang Yang, Han-Wei Hsiao, Chung-Hong Lee IPM Multilingual document mining.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Named Entity Disambiguation by Leveraging Wikipedia Semantic Knowledge Presenter : Jiang-Shan Wang Authors.
Intelligent Database Systems Lab Presenter : CHANG, SHIH-JIE Authors : Chun Fu Lin, Yu-chu Yeh, Yu Hsin Hung, Ray I Chang 2013.CE. Data mining for providing.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Enhancing Text Clustering by Leveraging Wikipedia Semantics.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Decision trees for hierarchical multi-label classification.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Learning Portfolio Analysis and Mining for SCORM Compliant Environment Pattern Recognition (PR, 2010)
Intelligent Database Systems Lab Presenter : BEI-YI JIANG Authors : JAMAL A. NASIR, IRAKLIS VARLAMIS, ASIM KARIM, GEORGE TSATSARONIS KNOWLEDGE-BASED.
Intelligent Database Systems Lab Presenter: YU-TING LU Authors: Yong-Bin Kang, Pari Delir Haghighi, Frada Burstein ESA CFinder: An intelligent key.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Investigating the Effect of Sampling Methods for Imbalanced.
A Unifying View on Instance Selection
Presentation transcript:

Intelligent Database Systems Lab Presenter: HONG, CHIA-TSE Authors: Yen-Hsien Lee, Chih-Ping Wei, Tsang-Hsiang Cheng, Ching-Ting Yang DSS Nearest-neighbor-based approach to time- series classification

Intelligent Database Systems Lab Outlines Motivation Objectives Methodology Experiments Conclusions Comments 1

Intelligent Database Systems Lab Motivation Prior classification analysis research predominately focuses on constructing a classification model from training instances that involve nontime-series attributes. Traditional classification analysis techniques such statistical-transformation-based approach often results in information loss and, in turn, imperils classification effectiveness. (55, 45, 35, 25, 15) ( 5, 20, 35, 50, 65)

Intelligent Database Systems Lab Objectives This study aims to propose and develop a novel time- series classification technique based on the k-nearest- neighbor (kNN) classification approach. The preservation of trends in time-series sequences when inducing a classification model for a time-series classification problem can reduce information loss.

Intelligent Database Systems Lab Methodology(review): Analysis and selection of learning strategy for time-series classification 4 Model-based learning strategy Instance-based learning strategy

Intelligent Database Systems Lab Methodology - kNN-based time-series classification technique Decision combination methods 5 Time-series similarity measure KNN-TSC

Intelligent Database Systems Lab 6 Experiments

Intelligent Database Systems Lab 7 Experiments Performance benchmark

Intelligent Database Systems Lab 8 Experiments Parameter tuning experiments

Intelligent Database Systems Lab 9 Experiments Comparative evaluation

Intelligent Database Systems Lab Conclusions The empirical results show that the proposed kNN-TSC technique achieves better performance than the traditional statistical-transformation-based approach does. With the use of the stratified average method for decision combination, kNN-TSC technique can effectively handle the asymmetric class-distribution problem.

Intelligent Database Systems Lab Comments Advantages - Achieves better performance. Applications - Time-series classification problems.