마이크로 웨이프 텀 프로젝트 기존의 MEMS 스위치의 특성 분석

Slides:



Advertisements
Similar presentations
MICROELECTROMECHANICAL SYSTEMS ( MEMS )
Advertisements

Piezoelectric Micromachined Ultrasound Transducers (pMUTs)
Miniature Tunable Antennas for Power Efficient Wireless Communications Darrin J. Young Electrical Engineering and Computer Science Case Western Reserve.
EEE529:Microsystems RF MEMS Mamady Kebe. Introduction: Radio frequency microelectromechanical system refers to Electronic components at micro size scale;
Simple piezoresistive pressure sensor. Simple piezoresistive accelerometer.
Professor Richard S. MullerMichael A. Helmbrecht MEMS for Adaptive Optics Michael A. Helmbrecht Professor R. S. Muller.
Metal Oxide Semiconductor Field Effect Transistors
Wafer Level Packaging: A Foundry Perspective
Carbon nanotube field effect transistors (CNT-FETs) have displayed exceptional electrical properties superior to the traditional MOSFET. Most of these.
Design and Simulation of a Novel MEMS Dual Axis Accelerometer Zijun He, Advisor: Prof. Xingguo Xiong Department of Electrical and Computer Engineering,
İsmail Erkin Gönenli Advisor: Zeynep Çelik-Butler Department of Electrical Engineering The University of Texas, Arlington.
Arizona State University 2D BEAM STEERING USING ELECTROSTATIC AND THERMAL ACTUATION FOR NETWORKED CONTROL Jitendra Makwana 1, Stephen Phillips 1, Lifeng.
MEMS Gyroscope with Electrostatic Comb Actuation and Differential Capacitance Sensing Haifeng Dong, Zheng Yao, Advisor: Xingguo Xiong Department of Electrical.
A MEMS Design Project Debby Chang, Randall Evans, Caleb Knoernschild under Jungsang Kim, Ph.D. December 10, 2005 Duke University.
TimePix / InGrid Problems and solutions Yevgen Bilevych Amsterdam
CSE 495/595: Intro to Micro- and Nano- Embedded Systems
NOVEL PROCESSES FOR SOI-BASED MEMS AT VTT
1 Carnegie Mellon Microcantilever Gas Chemical Sensors with Multi-modal Capability Sarah S. Bedair 1 Advisor:
Design of Low-Power Silicon Articulated Microrobots Richard Yeh & Kristofer S. J. Pister Presented by: Shrenik Diwanji.
Nanosatellite Communication And MEMS Technology
MEMS Cell Adhesion Device Andrea Ho Mark Locascio Owen Loh Lapo Mori December 1, 2006.
Nanoscale memory cell based on a nanoelectromechanical switched capacitor EECS Min Hee Cho.
Applications: CO Gas Sensor
Bulk MEMS 2013, Part 2
The Deposition Process
Case Studies in MEMS Case study Technology Transduction Packaging
RF MEMS devices Prof. Dr. Wajiha Shah. OUTLINE  Use of RF MEMS devices in wireless and satellite communication system. 1. MEMS variable capacitor (tuning.
Surface micromachining
PilJae Park 2/23/2007 Slide 1 Transmit/Receive (T/R) Switch Topology Comparison Series-series Topology Series-shunt Topology High impedance block  In.
ES 176/276 – Section # 2 – 09/19/2011 Brief Overview from Section #1 MEMS = MicroElectroMechanical Systems Micron-scale devices which transduce an environmental.
Simple piezoresistive pressure sensor
Micromachining 기술 II (Non-Silicon Based) 최범규 (Choi, Bumkyoo) 서강대학교 기계공학과.
1 Basics of Microwave Measurements Steven Anlage
VFET – A Transistor Structure for Amorphous semiconductors Michael Greenman, Ariel Ben-Sasson, Nir Tessler Sara and Moshe Zisapel Nano-Electronic Center,
280 GHz f T InP DHBT with 1.2  m 2 base-emitter junction area in MBE Regrown-Emitter Technology Yun Wei*, Dennis W. Scott, Yingda Dong, Arthur C. Gossard,
Microwave Traveling Wave Amplifiers and Distributed Oscillators ICs in Industry Standard Silicon CMOS Kalyan Bhattacharyya Supervisors: Drs. J. Mukherjee.
1 Absolute Pressure Sensors Z. Celik-Butler, D. Butler and M. Chitteboyina Nanotechnology Research and Teaching Facility University of Texas at Arlington.
RF MEMS variable capacitors Tae Yong Song Micro wave devices term project SNU
Quasi-Monolithic Integration Technology for Microwave & Millimeter Wave Applications 박 재 홍 Microwave 소자 기말 발표.
1 Nanotech Project 2008 / Phase 2 Project: Team: ACCOTO Celso ADHAM Mohamed LARRIEU JeanCharles LE GROS Christophe MAQUEDA LÓPEZ Mariazel OTTONELLO BRIANO.
MVE MURI 99 Kick-off Meeting R. Barker, Technical Monitor Started 1 May 99 October 1999 Project Introduction and Motivation Millimeter-wave switches may.
ASICS for MEMS BRILLANT Grégory 13 th of October.
Mechanical Modeling The dynamic response is give by d’Alembert principle and is From this equation the switching time, mechanical bandwidth and and effect.
Flip Chip Technology Kim Dong Hwan Microwave Device Term Project
ISAT 436 Micro-/Nanofabrication and Applications
1 M. Chitteboyina, D. Butler and Z. Celik-Butler, Nanotechnology Research and Teaching Facility University of Texas at Arlington
New Low Cost & High Performance Transmission Line
The Development of the Fabrication Process of Low Mass circuits Rui de Oliveira TS-DEM.
Nanosatellite Communication
The Fate of Silicon Technology: Silicon Transistors Maria Bucukovska Scott Crawford Everett Comfort.
(Chapters 29 & 30; good to refresh 20 & 21, too)
In this poster, a reconfigurable microvalve array for BioMEMS lab-on-a-chip application is proposed. The device is connected to one inlet port and multiple.
Microfabrication Home exercise #3 Return by Feb 21st, 22 o’clock
Solar Cell and NMOS Transistor Process EE290G Joey Greenspun.
Objective Functions for Optimizing Resonant Mass Sensor Performance
Along with shrinking from Macro-machine to MEMS :
Microfabrication Home 3 exercise Return by Feb 5th, 22 o’clock
Temperature Sensors on Flexible Substrates
Unit-2.
RF MEMS in Energy Harvesting
SCUBA-2 Detector Technology Development
Micromachining 기술 II (Non-Silicon Based) 서강대학교 기계공학과
Memscap - A publicly traded MEMS company
MEMS: Basic structures & Current Applications
LPKF Laser Direct Structuring System
(2) Incorporation of IC Technology Example 18: Integration of Air-Gap-Capacitor Pressure Sensor and Digital readout (I) Structure It consists of a top.
BONDING The construction of any complicated mechanical device requires not only the machining of individual components but also the assembly of components.
Sruthi Dinesh1, Dr.Aanandan C.K.1
David R. Pedersen, Michael H. Guddal University of California, Davis
Experimental Set-Up & Result Fabrication Process & Results
Presentation transcript:

마이크로 웨이프 텀 프로젝트 기존의 MEMS 스위치의 특성 분석 2001-21582 최병두 2004. 6. 21

Contents Raythone Capacitive switch Rockwell DC-Contact Series switch Lincoln Lab. Series switch Summary MEMS switch 특성 분석 Conclusion References

RF MEMS 스위치 직접 접촉 방식의 저항형 스위치 비접촉 방식의 용량형 스위치 원리 원리 접촉부와 전송선 사이에서 금속과 금속의 접촉으로 스위치 동작 비접촉 방식의 용량형 스위치 원리 전송선, 가동 구조물 사이의 정전 용량 변화를 이용 MEMS 스위치를 크게 두가지로 나누는 데 그 중 하나인 직접 접촉식 스위치 입니다. 그림과 같이 신호선이 끈겨있다가 평판이 아래로 내려와 메탈과 접촉해 신호가 흐르게 되는 방식입니다. 이 방식의 가장 큰 문제점은 접촉부에 전류가 흐르기 때문에 용접현상이 일어난다는 것입니다.

Raythone Capacitive Switches[1]

Raythone Capacitive Switches[2] Substrate: high resistivity silicon (>5000 Ohm-cm) Electrode: tungsten (sputtering, <0.5 µm) Dielectric: nitride (PECVD, 2000 Å, ε=6.7, 300oC) T-line (CPW): aluminum (evaporation, 4 µm) Spacer: PR (spin coating) Membrane: aluminum alloy (sputtering, <0.5 µm) Etch Hole: 2x2 µm Releasing: oxygen plasma etching (100 min)

Raythone Capacitive Switches[3] Performance Loss(dB): 0.15 @ 10 GHz, 0.28 @ 30 GHz Isolation(dB): 15 @ 10 GHz, 35 @ 30 GHz Actuation voltage: 50 V Cap. ratio: 80-120 Switching time: 3.5/5.3 µs Reliability: 500 million cycle

Rockwell DC-Contact Series switches[1]

Rockwell DC-Contact Series switches[2] Substrate: GaAs Cantilever: Oxide (PECVD, 2 µm, 250oC) Contact & T-line: Au (evaporation, 1 µm) Spacer: Polyimide (highest baking: 250oC) Top electrode: aluminum (evaporation, 0.25 µm) Releasing: oxygen plasma etching

Rockwell DC-Contact Series switches[3] Loss(dB): ~0.2 @ <40 GHz Isolation(dB): -40 @ 1 GHz, -25 @ 40 GHz Actuation voltage: ~85 V Switching time: ~10 µs Reliability: ~100 million cycle Input resistance: 0.4-1 Ohm

Lincoln Lab. Series switches[1] Substrate: Silicon (3000 Ohm-cm) Cantilever arm Oxide/Al/Oxide (100/350/100 nm) Oxide: PECVD Al: sputtering Bottom electrode TaN: Buried 200 nm below the switch Size: ~50x50 µm2 DC-contact: platinum-to-platinum

Lincoln Lab. Series switches[7,8] Small Cap. Switch DC. Switch Large Cap. Switch Loss(dB): 0.1-0.2 @ 0.1-40 GHz Isolation(dB): -40 @ 4 GHz, -22 @ 30 GHz Actuation voltge: 30-80 V Reliablity: 9 billion cycle (N/A but similar device)

(N/A but similar device) Summary Raythone Rockwall Lincoln Substrate Silicon GaAs Loss 0.28 dB 0.2 dB Isolation 35 dB 25dB 22 dB Actuation Voltage 50 V 85V 80 V Switching Time 3.5/5.3 µs 10 µs 1 µs Reliability 500 million 100 million 9 billion (N/A but similar device)

MEMS switch 특성 분석 Signal on state Signal off state

MEMS switch 특성 분석 50um 148um 43um Angle a 250um

MEMS switch 특성 분석 변수 a : angle (degree)

MEMS switch 특성 분석 변수 a가 0 degree 일 때 (signal on state),

MEMS switch 특성 분석 Fe: electrostatic force Fr: restoring force A: area V: actuation voltage g: gap td: dielectric thickness E: young’s modulus Iz: z axis inertia t: cantilever thickness w: cantilever width

MEMS switch 특성 분석

Conclusion Lincoln lab. Switch와 구동 전압이 다르게 된 이유 실제 스위치의 경우, cantilever에 curl이 있지만 시뮬레이션에는 없음 Lincoln lab. Switch의 장점 Curl로 인하여 pull-down voltage의 감소 (약 50%) Curl로 인하여 squeeze film damping이 무시 되어 빠른 switching 속도 가능 Reliability의 증가 Lincoln lab. Switch의 단점 Curl 제작의 어려움 시뮬레이션 보완점 Curl이 아니더라도 cantilever를 여러 조각으로 분할

References [1] Charles L. Goldsmith et al., Performance of Low-Loss RF MEMS Capacitive Switches, IEEE Microwave and guided wave lett., Vol. 8, No. 8, pp. 269-271, 1998. [2] Z. Jamie Yao et al., Micromachined Low-Loss Microwave Switches, J. Micro-electromech. Systems. Vol. 8, No. 2, pp. 129-134, 1999. [3] J. Jason Yao et al., A Surface Micromachined Miniature Switch for Telecom-munications Applications with Signal Frequencies from DC up to 4 GHz, 8th Int’l Conf. Solid-State Sonsors and Actuators, pp. 384-387, 1995. [4] R. E. Mihailovich, MEM Relay for Reconfigurable RF Circuits, IEEE Microwave and wireless comp. Lett., Vol. 11, No. 2, pp.53-55, 2001. [5] P. Zavracky et al., Micromechanical Switches Fabricated Using Nickel Surface Micromachining, J. Microelectromech. Systems. Vol. 6, No. 1, pp. 3-9, 1997. [6] Sumit Majumder et al., Study of contacts in an electrostatically actuated microswitch, Sensors and Actuators, Vol 93, pp.19-26, 2001. [7] C. Bozler et al., MEMS Microswitch arrays for reconfigurable distributed microwave components, 2000 IEEE MTT-S Digest, pp. 153-156, 2000. [8] Sean Duffy et al., MEMS Microswitches for Reconfigurable Microwave Circuitry, IEEE Microwave and wireless comp. Lett., Vol. 11, No. 3,pp.106-108, 2001.