Roots, Stems & Leaves.

Slides:



Advertisements
Similar presentations
Specialized Tissue in Plants
Advertisements

Ch 23- Roots, Stems, and Leaves
Roots, Stems, and Leaves.
Unit 7 Plants Ch. 23 Roots, Stems, & Leaves.
Objectives: List and describe the major plant organs their structure and function List and describe the major types of plant cells and their functions.
Chapter 23 Biology – Miller • Levine
23.1 Specialized Tissues in Plants
A seed plant is anchored in the ground by its
Plant Structures Roots, Stems, and Leaves
Chapter 23 Roots 23:2.
Chapter #42 – Plant Anatomy & Nutrient Transport
The Plant Kingdom (Part I)
21.1 Plant Cells and Tissues TEKS 5B, 10B, 10C The student is expected to: 4B investigate and explain cellular processes, including homeostasis, energy.
Plant Structures Roots, Stems, and Leaves
**No microscopes today**
Plant Structure and Growth
Plant Structure and Function
Ch 29 – Plant Structure and Function
Chapter 23 Roots, Stems and Leaves.
Chapter 23 Roots, Stems and Leaves.
Plant Structure Chapter 35.
Plant Form & Function Plant Anatomy
Plant anatomy Roots  Absorb water and dissolved nutrients  Anchor plants  Hold plants upright Stems  Supports the plant body  Transports nutrients.
Roots, Stems, and Leaves Principles of Life Science Rainier Jr/Sr High School Mr. Taylor.
Patterns of Structure and Function in Plants. Brain Viagra In The News.
Specialized Cells in Plants
Plants: Structure and Function
Plant Structure And Growth. The Plant Body is Composed of Cells and Tissues l Tissue systems l made up of tissues l made up of cells.
Chapter 23 Plant Structure and Function
Plants Tissues part 2 Stem Leaf.
Chapter 23 BIO 392 Flowering plants Cone- bearing plants Ferns and their relatives Mosses and their relatives Green algae ancestor Flowers; Seeds Enclosed.
Plant Structures and Tissues. 3 Organs in Vascular plants 1.Roots 2.Stem 3.Leaves.
A. Plants have 3 organs:  1. Roots- Anchor Absorb water and nutrients  2. Leaves- Photosynthesis  3. Stems- Support and transport.
KEY CONCEPT Plants have specialized cells and tissue systems.
Roots, Stems, and Leaves The three main plant organs are roots, stems, and leaves. These organs are made up of three main kinds of tissues: dermal tissue.
The physiology of plants
Plant Structure Growth & Transport
 The cells of a seed plant are organized into different tissues and organs.  Three of the principal organs of a seed plants are ◦ Roots—absorb and transport.
Chapter 33: Stems and Plant Transport Chapter 34: Roots.
CHAPTER 9 – PLANT ORGANIZATION. 9.3 – Plant Tissues.
Chapter23 Roots, Stems and Leaves Photo Credit: Getty Images Page 578.
Plant Structures Stems Horticulture I Specialized Tissues in Plants Plants are as successful if not more successful than animals Plants are as successful.
Roots, Stems, and Leaves Ms. Moore 9/6/2012
Plant Structure and Function That’s called physiology in bio-speak.
21.1 Plant Cells and Tissues TEKS 5B, 10B, 10C KEY CONCEPT Plants have specialized cells and tissue systems.
Meristematic Tissue (where mitosis occurs) Responsible for growth in plant Produces new cells that will eventually specialize –↑ height = apical –↑ diameter=
Plant Structure and Function Chapter 31. Plant cells: Parenchyma Large central vacuole Storage of water Form the bulk of non- woody plants.
Plant Tissues. Cells of a vascular plant are organized into different tissues and organs Three major organs are: roots, stems, and leaves Dermal tissue.
Chapter 23 Roots, Stems, & Leaves
Chapter 25 Plant Structure and Function. I. Tissues A. Dermal Tissue Covers the outside of a plant’s body as protection Forms a “skin” called the epidermis.
Plant Organs Roots & Stems.
Plant Structure Roots Stems Leaves. Plant Organs Roots Stems Leaves.
Slide 1 of 34 Copyright Pearson Prentice Hall Biology.
Lecturer: Suhail Al-Khatib.  Flowering plants, or angiosperms, are extremely diverse but share many common structural features.  Most flowering plants.
Plants. Plant Organs Roots – Support a plant – Anchor it to the ground – Store food – Absorb water – Dissolve nutrients from soil Stems – Provide support.
Specialized Tissues in Plants. The three principal organs of seed plants are roots, stems, and leaves. These organs perform functions such as the transport.
The Structure and Function of Plants
Chapter 23 – Roots, Stems, & Leaves
Chapter 23-2: Roots Describe the two main types of roots
Part 2: Tissues, Roots, Stems & Leaves
Flowering Plants Structure and Organization
Plant Structure and Function
Plant Structure and Growth
Overview of Plants 2.
Plant Tissues.
Chapter 23 Roots 23:2.
Plant Structures Roots, Stems, and Leaves
Chapter 23 Biology – Miller • Levine
Plant Tissues.
Presentation transcript:

Roots, Stems & Leaves

Roots, Stems & Leaves Specialized Organs & tissues in plants – plants do not have organ systems – Fig. 23-2 Roots – anchors plant, takes up water and minerals, provides protection from bacteria & fungi, some specialized for food storage Stems - provide support, transport substances, provide protection Leaves – site of photosynthesis, prevent water loss (guard cells & cuticle), area of gas exchange

Roots, Stems & Leaves

Roots, Stems & Leaves

Roots, Stems & Leaves D. Dermal tissue – “skin” of plant, outermost layer Single layer of epidermal cells Cuticle – waxy layer that slows down water loss Trichomes – speialized cells that provide protection Root hairs – specialized for water absorbtion Guard cells – found on the underside of a leaf, open & close – fig. 23-19

Dermal Tissue

Roots, Stems & Leaves E. Vascular tissue – “bloodstream” of plant, specialized for transport Xylem – transports water one way – from root to leaves Composed of tracheids and vessel elements Xylem cells are dead and hollow Provide support (most of the cells of a tree trunk are dead xylem cells) Phloem – transports water and minerals in two directions Composed of sieve tube elements and companion cells cells are living

Vascular Tissue

Vascular Tissue

Roots, Stems & Leaves F. Ground tissue – most abundant tissue; found between dermal and vascular tissue – Fig. 23-4 Parenchyma – thin walled; function mainly in photosynthesis and storage Collenchyma – thick walled, provide support, flexible Sclerenchyma – thick walled, provide support, very rigid cell walls Where would you expect to find more scherenchyma – in the leaves or the stem of a plant? Where would you expect to find more parenchyma – in the leaves or the stem of a plant?

Ground Tissue

Roots, Stems & Leaves Meristematic tissue – “growth” tissue; made up of cells that undergo mitosis and cell division frequently – Fig. 23-5 Meristems – where cell division takes place; found only at specific locations a. Apical meristem – present in growing tips of stems and roots; accounts for an increase in length b. Cambium – increases thickness of stems & roots; gives rise to some protective (cork) & vascular tissue Not all plant cells or tissue are capable of producing new plant parts, growth is always associated with the presence of meristematic tissue

Meristamic Tissue

Meristamic Tissue **** Except for meristematic tissue, all other tissues are found continuously throughout plant organs.****

Roots – Fig. 23-6 Types 1. primary root – 1st structure to emerge from a seed 2. Secondary root – roots formed from tissues of

Roots – Fig. 23-6 B. Systems 1. taproot – primary root that grows longer and thicker than other roots 2. fibrous – numerous roots that branch to such an extent that no single root grows larger than the rest

Roots – Fig. 23-6 B. Systems 3. adventitous – roots that grow from stems or leaves (ex. Ivy & Spanish moss) http://www.youtube.com/watch?v=fPTJ3qD1ikk (root growth)

Roots – Fig. 23-6 Root Structure and Growth – Fig. 23-7 Made up of all tissue types Epidermis & endodermis are dermal tissues Cortex is ground tissue Vascular cylinder is vascular tissue Roots are divided into various “zones” Root cap – protects meristematic tissue Meristematic zone – actively dividing cells Elongation zone – cells enlarge Maturation zone – differentiation 9cellular specialization)

Roots – Fig. 23-6

Roots – Fig. 23-6 Root Functions – anchor, absorb water and minerals Nutrients in the soil are needed by the plant in order for it to be healthy Movement of minerals and water – both active transport & osmosis are involved in movement from soil to vascular cylinder Minerals are actively transported from a low concentration to a high concentration, requires energy This causes a difference in water between the root and soil Therefore, water moves from a high concentration in the soil to a low water concentration in the cells Casparian strip – waterproof substance that keeps substances from “squeezing” between cells of endodermis; allows endodermis to keep some substances out of vascular cylinder; ensures one way movement into cylinder

Roots – Fig. 23-6

Roots – Fig. 23-6 2. Movement of minerals and water - (con’t) http://www.youtube.com/watch?v=Yli0FcsQmuI&feature=related e. Root pressure – Fig. 23-10 1. created by one way movement of water & minerals 2. root cells don’t expand, so as water keeps moving in it has nowhere to go but up (remember cohesion & adhesion) 3. Root pressure only accounts for water to rise approx. 1m

Stems – Fig. 23-11 Basic function is to support and transport water and minerals from the soil to the leaves

Stems – Fig. 23-11 A. Monocot and Dicot Stems – Fig. 22-25, 23-12 Monocot – vascular bundles are scattered; ground tissue is fairly uniform Dicot – vascular bundles are arranged in a ring; ground tissue makes up pith & cortex

Stems – Fig. 23-11 B. Primary growth – increase in length caused by cell division in apical meristem; Fig. 23-13

Stems – Fig. 23-11 C. Secondary growth – increase in width caused by cell division from meristematic tissue found in vascular cambium & cork cambium – Fig. 23-14 Vascular cambium produces new xylem & phloem Wood is formed as xylem cells die each year and form layers or “rings” a. Heartwood – older xylem that no longer conducts water but does provide support b. Sapwood – active xylem that conducts water Bark – made up of phloem, cork cambium, & cork; cork cambium produces cork which helps protect the stem – Fig. 23-15

C. Secondary growth (con’t) Stems – Fig. 23-11 C. Secondary growth (con’t)

C. Secondary growth (con’t) Stems – Fig. 23-11 C. Secondary growth (con’t)

Leaves Leaves (most) are specialized for photosynthesis A. Structure – Fig. 23-17 Flat, broad to increase surface area exposed to the sun Arrangement – also maximizes exposure to the sun

Leaves B. Internal function & structure – Fig. 23-18, & 23-19 Cuticle – waxy outermost layer, protects & slows down water loss Epidermis – clear, with little to no pigment Stomates – exchange of oxygen and carbon dioxide; guard cells regulate opening & closing of stomates to balance water loss with rates of photosynthesis

Leaves Guard cells

B. Internal function & structure – Fig. 23-18, & 23-19 c. Mesophyll - two types 1. palisade mesophyll – tightly packed; cells contain many chloroplasts 2. spongy mesophyll – large air spaces between cells; fewer chloroplasts

Mesophyll

Leaves B. Internal function & structure – Fig. 23-18, & 23-19 d. Veins – made up of xylem and phloem tissue

Leaves Veins

Transport A. Transpiration – the evaporation of water from plant surfaces; most takes place on leaves through opened stomates – Fig. 23-22 http://www.youtube.com/watch?v=At1BJJDcXhk B. Water transport 1. Capillary action – involves cohesion & adhesion – Fig. 23-21 2. root pressure – osmotic pressure in roots caused by a buildup of solutes 3. transpirational pull – the main process bys which water moves through the xylem of a plant

Transport

Transport B. Water transport (con’t) 3. Transpirational pull – the main process bys which water moves through the xylem of a plant a. Water moves molecules exit air spaces in spongy mesophyll to atmosphere – creates negative pressure b. Lost water in air spaces replaced by water from xylem tissue c. Cohesion/adhesion keep water moving up from the roots d. Is water pulled or pushed in transpiration? 4. Regulation of transpirational is controlled by the opening & closing of stomates, which depends on light; temp; and water availability

Transport Nutrient transport – involves the movement of sugars from one area of a plant to another 1. Sugars move from a source to a sink

Transport Nutrient transport – (con’t) 2. Pressure flow hypothesis http://www.youtube.com/watch?v=-b6dvKgWBVY a. Sugars are actively transported from a “source” cell into sieve tubes: this causes water to follow by osmosis (from xylem to phloem) b. Seive cells in “sink” area lose sugar; this causes water to move from phloem tissue to xylem c. This water pressure gradient causes liquid in phloem to flow