Introduction Simulation Results Conclusion Hybrid Source Studies Olivier Dadoun A. Variola, F. Poirier, I. Chaikovska,

Slides:



Advertisements
Similar presentations
Photon Collimation For The ILC Positron Target Lei Zang The University of Liverpool Cockcroft Institute 24 th March 2007.
Advertisements

A Capture Section Design for the CLIC Positron Source A. VIVOLI* Thanks to: L. RINOLFI (CERN) R. CHEHAB (IPNL & LAL / IN2P3-CNRS) O. DADOUN, P. LEPERCQ,
Friday 28 th April Review of the aims and recommendations from the workshop L. Rinolfi.
Simulations with ‘Realistic’ Photon Spectra Mike Jenkins Lancaster University and The Cockcroft Institute.
Status of the experiment at KEKB for the hybrid targets Junji Urakawa instead of T.Takahashi KEK Positron Workshop Durham 28 October 2009 First test of.
JCS e + /e - Source Development and E166 J. C. Sheppard, SLAC June 15, 2005.
Neutral Particles. Neutrons Neutrons are like neutral protons. –Mass is 1% larger –Interacts strongly Neutral charge complicates detection Neutron lifetime.
E166 “Polarized Positrons for Future Linear Colliders” John C. Sheppard E166 Co-spokesman SLAC: August 31, 2004.
1 st October 2008 Réunion sur la contribution exceptionnelle de la FrancePositron generation L. Rinolfi (CERN) Contribution exceptionnelle de la France.
R.Chehab/Posipol2008/Hiroshima, june POSITRON SOURCES USING CHANNELING FOR ILC & CLIC R.Chehab, X.Artru, M.Chevallier, IPNL/IN2P3/CNRS, Universite.
Design of the Photon Collimators for the ILC Positron Helical Undulator Adriana Bungau The University of Manchester Positron Source Meeting, July 2008.
Beijing, Feb 3 rd, 2007 LEPOL 1 Low Energy Positron Polarimetry for the ILC Sabine Riemann (DESY) On behalf of the LEPOL Collaboration.
Simulation of Positron Production and Capturing. W. Gai, W. Liu, H. Wang and K. Kim Working with SLAC & DESY.
Status of Hybrid target R&D at KEK-LINAC T.Takahashi Hiroshima University LCWS/ILC10 Beijing Collaborators: V. Strakhovenko O. Dadoun, R. Chehab, A.Variola,
Helical Undulator Based Positron Source for LC Wanming Liu 05/29/2013.
Compton/Linac based Polarized Positrons Source V. Yakimenko BNL IWLC2010, Geneva, October 18-22, 2010.
Synchrotron radiation at eRHIC Yichao Jing, Oleg Chubar, Vladimir N. Litvinenko.
CLIC RF manipulation for positron at CLIC Scenarios studies on hybrid source Freddy Poirier 12/08/2010.
15 th October CLIC workshop The CLIC/ILC common issues for the sources Jim Clarke and Louis Rinolfi.
Spin Control and Transportation O. Adeyemi*, M. Beckmann**, V. Kovalenko*, L. Malysheva*, G. Moortgat-Pick*, S. Riemann**, A. Schälicke**, A. Ushakov**
Gamma ray interaction with matter A) Primary interactions 1) Coherent scattering (Rayleigh scattering) 2) Incoherent scattering (Compton scattering) 3)
ILC/CLIC e + generation working group Jim Clarke, STFC Daresbury Laboratory and Louis Rinolfi, CERN.
2nd ECFA LHeC Workshop; 1-3 September 2009, Divonne L. Rinolfi Possible e - and e + sources for LHeC 1 Thanks to O. Brüning, A. Vivoli and F. Zimmermann.
1 Question to the 50GeV group 3GeV からの 54π と 81π 、 6.1π の関係 fast extraction 部の acceptance (81π?) Comments on neutrino beamline optics?
Hybrid Target R&D at KEK-LINAC T.Takahashi Hiroshima University 25 Septemer 2012 LCWS2012, Arlington, TX Collaborators: V. Strakhovenko O. Dadoun, R. Chehab,
R.Chehab/ R&D on positron sources for ILC/ Beijing, GENERATION AND TRANSPORT OF A POSITRON BEAM CREATED BY PHOTONS FROM COMPTON PROCESS R.CHEHAB.
Undulator based polarized positron source for Circular electron-positron colliders Wei Gai Tsinghua University/ANL a seminar for IHEP, 4/8/2015.
Status of Hybrid target R&D at KEK-LINAC T.Takahashi Hiroshima University March 2011 ALPG11 Eugene Collaborators: V. Strakhovenko O. Dadoun, R. Chehab,
Update on ILC Production and Capturing Studies Wei Gai, Wanming Liu and Kwang-Je Kim ILC e+ Collaboration Meeting IHEP Beijing Jan 31 – Feb 2, 2007.
22 th October 2010 IWLC Sources working group J. Clarke, T. Omori, L. Rinolfi, A. Variola Summary of Sources working group WG1 with contributions from.
Capture and Transport Simulations of Positrons in a Compton Scheme Positron Source A. VIVOLI*, A. VARIOLA (LAL / IN2P3-CNRS), R. CHEHAB (IPNL & LAL / IN2P3-CNRS)
27 th May 2009 CLIC ACE meetingL. Rinolfi CLIC Main Beam generation Baseline configuration only L. Rinolfi for the CLIC Injector complex team.
POSIPOL Berlin ILC/CLIC e + generation working group Wei Gai, ANL Louis Rinolfi, CERN Thanks to Omori-san for the coordination of the Webex meetings.
Undulator Based ILC positron source for TeV energy Wanming Liu Wei Gai ANL April 20, 2011.
A_RD_6: Study and optimization of the power deposition density in new positron targets Masanori Satoh (Accelerator Laboratory, KEK) On behalf of collaborators:
ILC Positron Production and Capturing Studies: Update Wei Gai, Wanming Liu and Kwang-Je Kim Posipol Workshop, Orsay, France May 23-25, 2007 Work performed.
Positron Source for Linear Collider Wanming Liu 2013 DOE Review.
28 th August 2011 POSIPOL Workshop – IHEP-Beijing- ChinaL. Rinolfi Louis Rinolfi CLIC e + status.
CHANNELING 2014 COMPTE-RENDU R.CHEHAB R.Chehab/Channeling20141.
Status of Hybrid target R&D at KEK-LINAC T.Takahashi Hiroshima University 06 Se0temer 2012 POSIPOL2012 DESY Zeutzen Collaborators: V. Strakhovenko O. Dadoun,
R.Chehab/FCPPL2010/Lyon1 AN HYBRID POSITRON SOURCE FOR ILC -Collaboration IN2P3-IHEP, with BINP, KEK, Hiroshima-U, CERN- X.Artru, R.Chehab, M.Chevallier.
A.Variola Frascati SuperB meeting 1 Injector and positron source scheme. A.Variola, O.Dadoun, F Poirier, R.Chehab, P Lepercq, R.Roux, J.Brossard.
Spin Tracking at the ILC Positron Source with PPS-Sim POSIPOL’11 V.Kovalenko POSIPOL’11 V. Kovalenko 1, G. Moortgat-Pick 1, S. Riemann 2, A. Ushakov 1.
Dollan, Laihem, Lohse, Schälicke, Stahl 1 Monte Carlo based studies of polarized positrons source for the International Linear Collider (ILC)
Positron Source for Linear Collider Wanming Liu 04/11/2013.
ROBERT CHEHAB (IPNL/IN2P3/CNRS AND UNIVERSITE LYON 1) ON BEHALF OF ILC_IHEP_IPNL_POSITRON SOURCE GROUP ON BEHALF OF POSITRONS FOR LINEAR COLLIDERS: AN.
POLARIZED AND UNPOLARIZED POSITRON SOURCES FOR LINEAR COLLIDERS Robert CHEHAB IPNL/IN2P3/CNRS R.Chehab/JCL/Grenoble/20141 This talk is associated to the.
Some Aspects on Compton Scheme Positron Source Study Wanming Liu ANL Tsunehiko OMORI KEK.
Polarization of final electrons/positrons during multiple Compton
Positron Source and Injector
Test of Hybrid Target at KEKB LINAC
Positron capture section studies for CLIC Hybrid source - baseline
Injector and positron source scheme. A first evaluation Thanks to O
POSITRON SOURCES FOR FUTURE COLLIDERS
Huagen Xu IKP: T. Randriamalala, J. Ritman and T. Stockmanns
Status of the CLIC main beam injectors
Progress with Spin Tracking in GEANT4
CLIC e+ status Louis Rinolfi.
CLIC Main Beam Sources and their transfer lines
Introduction Goal: Can we reconstruct the energy depositions of the proton in the brain if we are able to reconstruct the photons produced during this.
REVIEW OF POSITRON SOURCE R&D FOR LINEAR COLLIDERS
CLIC Undulator Option for Polarised Positrons
ILC/CLIC e+ generation working group
POSITRON SOURCES FOR LINEAR COLLIDERS
Capture and Transmission of polarized positrons from a Compton Scheme
SuperB e+/e- main linac and diagnostics studies
CEPC Injector positron source
Higgs Factory Backgrounds
A POSITRON SOURCE USING CHANNELING IN CRYSTALS FOR LINEAR COLLIDERS
Background Simulations at Fermilab
Presentation transcript:

Introduction Simulation Results Conclusion Hybrid Source Studies Olivier Dadoun A. Variola, F. Poirier, I. Chaikovska, J. Bonis R.Chehab L. Rinofli, A. Vivoli, V. Strakhovenko

Positron sources using channeling Baseline for CLIC : 1.Un-polarized : hybrid source 2.Polarized : Compton scheme* for both we want to evaluate : positron yield, energy deposition, *polarization (…) with respect to incident beam energy, target thickness, #cavities, #lasers … 1. Un-polarized : hybrid source At energies of some GeV the electron motion in the axial fields of an aligned crystal ~ helical undulator (without the polarization) gamma + charged particles Only the photons are impinging on the converter: limits the energy deposition in the amorphous target

Positron sources using channeling 1. Un-polarized : hybrid source At energies of some GeV the electron motion in the axial fields of an aligned crystal ~ helical undulator (without the polarization) gamma + charged particles Only the photons are impinging on the converter: limits the energy deposition in the amorphous target few mm thick e +, e -, γ W Amorphous few mm thick 2.34e12 e - (few GeV) γ e+e+ e-e- W Crystal (radiator) d=few m Capture section

Positron sources for CLIC 1. Un-polarized : hybrid source One of our study is the impact of the: Amorphous thickness Distance between the crystal and the amorphous Different incident electron beam energy in terms of positrons Yield and energy deposited Channeling simulation Vladimir’s code (Xavier) Parmela (Astra, …) Poirier&Vivoli Geant4 EGS or Fluka

Target simulation Simulate the interaction between a primary beam (photon from crystal, polarized photon from Compton…) and an amorphous target –Peak Power Energy density (PEDD) Segmented target (Mesh) –Simulate the first element of the capture section Adiabatic Matching Device (AMD) … –Store the phase space parameters of the particles after the AMD (just after target) To simulate the capture and acceleration of the positron (Parmela) –Hadronic processes –Possibility to study the positron polarization Simulation geant4 based Positron Production Simulation (PPSim by analogy with BDSim Geant4 acceleration toolkit) PPSim and not PPS-Sim Sorry to the DESY Zeuthen positron group: the name is very closed to PPS-SIM see the A. Schaelicke’s tomorrow

PPSim screenshoot AMD (B0=6 T, L=50cm, α=22m -1 ) Target segmented here 1×3×3 (for display reason)

AMD effect Positron emittance: before (blue) and after the AMD (red) The AMD transform the phase space into larger dimensions and smaller momentum which will be easier to transport

Root output file ROOT header TFile*ppsim.root OBJ: TNtuplentuple ntuple : 0 at: 0x2f00000 OBJ: TH3Fhisto_peddhisto 3D Pedd : 0 at: 0x KEY: TTreeSampler1;1Sampler output KEY: TTreeSampler2;1Sampler output KEY: TH3Fhisto_pedd;1histo 3D Pedd KEY: TH1FElossHisto;1Energy Loss KEY: TObjString ########################################## #Particles Types : 22 #Particles Number: #Particles Mean Energy: MeV #Material: G4_W size(x,y,z)=(50.0,50.0,12.0) mm #Number of slices(nx,ny,nz)=(101,101,10) ######################################### Photon (from hybrid 5 GeV electron beam) impinging on 1.2cm W Target is a sensible volume: PPSTargetCaloSD::ProcessHits(G4Step*aStep,G4TouchableHistory*) depESum[NrZ][NrY][NrX] += aStep  GetTotalEnergyDeposit() Sampler sensible volume to store phase space particle before and after AMD. Can added more and move the sampler where we want (from BDSIM concept).

Crystal simulation Vladimir’s simulation Energies electrons beam : 3, 4, 5 and 10 GeV (thickness 1., 1.4, 1.5 and 1.6 mm ) gamma selection from those files X,Y : Gaus(0,2.5 mm)

Positrons phase space Incident electron beam 5 GeV (target=12mm, d=2m) σ x,y ~ 4.5 mm ~ 23.5 MeV

Results: Positron Yield(distance crystal-amorphous) Positron yield after the AMD r < 2.0 cm (e=10mm of amorphous) –Constraint only geometry not on Pt and Pz Positron yield not so affected by the distance 10 GeV 4 GeV 5 GeV 3 GeV

Results: PEDD (distance crystal-amorphous) PEDD for 10mm of amorphous (elementary volume few mm 3 ) PEDD decrease as the distance “d” increases The larger the distance is, the larger the incident photon spot size impinging on the amorphous: the smaller is the PEDD 10 GeV 5 GeV 4 GeV 3 GeV

Results: neutron flux For 5 GeV incident e- beam Giant resonance maximum E [10;20] MeV Most of the flux is below 10 MeV Seems to be very huge number (someone can comment ?) flux=(1787×2.08×10 12 /1.1×10 4 )/50Hz =6.6×10 9 neutrons/s

RMS presented in the following done with 20 different experiences (20 seed) Results CLIC note in preparation (abacus) Pessimistic: I took a wrong sigma for my calculation (factor sqrt(2) less) Need to redo the simulation

Conclusion & prospects In term of PEDD : –no problem for 3, 4, 5 GeV (PEDD<35J/g) –Preferable at 3m At 10 GeV must use a 0.8 cm target thickness Heating simulation (in progress) Need to study the contribution of charged particles –use charged particles coming from the radiator (e+, e-) with energy larger than E treshold to increase the yield e+/e- For PEDD, the Mesh characteristics is critical value –Need to have a good criteria

Conclusion & prospects My simulation can not handle the polarization when positron cross the AMD Geant4 can not track the polarization with the AMD –People from DESY Zeuthen gave me the classes to be implemented (need to fix this in Geant4?) –BDSIM simulation for the propagation of the positron after the target Check my code with PPS-Sim (Iryna) Discussion : upgrade the existing channeling code(s) in OO (perspective of Geant4 classes ?)