Misura del vapor dacqua in atmosfera mediante Lidar Raman F.Congeduti, P.DAulerio, T.Colavitto, P.Sanò, F.Cardillo (CNR, Istituto di Scienze dellAtmosfera.

Slides:



Advertisements
Similar presentations
1.Why is the moist adiabatic lapse rate lower than the dry- adiabatic lapse rate? Heat is released during condensation. 2.When temperatures are below freezing,
Advertisements

Radiometric profiling of tropospheric temperature, humidity and cloud liquid presentation to the Specialist Meeting on Microwave Remote Sensing 5-9 Nov.
1_Panel Production. 380 pannelli 45 giorni di produzione = 8.4 pannelli/day.
Feichter_DPG-SYKL03_Bild-01. Feichter_DPG-SYKL03_Bild-02.
1 Copyright © 2013 Elsevier Inc. All rights reserved. Appendix 01.
1 Copyright © 2013 Elsevier Inc. All rights reserved. Chapter 38.
Chapter 1 Image Slides Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
FACTORING ax2 + bx + c Think “unfoil” Work down, Show all steps.
Negative Numbers What do you understand by this?.
Proposed new uses for the Ceilometer Network
Aldo Morselli, INFN, Sezione di Roma 2 & Università di Roma Tor Vergata, 1 Aldo Morselli Andrea Lionetto Vladimir Zdravkovic.
ATS Meteorology 1McMurdo Weather Office Brief Austral Summer 2001/2002EXCELLENCE THROUGH TEAMWORK McMurdo Station Weather Office Presentation.
Measuring Time. Learning Goals To measure time, we start counting units of time when the activity begins and stop counting when the activity ends. The.
Break Time Remaining 10:00.
Find the total of 5 hours 10 minutes 3 hours 23 minutes 6 hours 39 minutes Click for solution + hours minutes7214 More than 60 minutes? YES: convert 60.
Calibration Method of Microwave Tb for Retrieving Accurate SST Akira Shibata JAXA / EORC Advances of Satellite Oceanography at Vladivostok, Oct. 3-6, 2007.
Consiglio Nazionale delle Ricerche 3 rd COPS and GOP workshop April 2006 Consiglio Nazionale delle Ricerche Istituto di Metodologie per lAnalisi.
News from the RMR-Lidar 2010/2011 ASAC meeting Norderstedt 21./ G. Baumgarten et al.
Page 1 Tropospheric NO 2 workshop, KNMI, De Bilt NL, Sept 2007M. Van Roozendael Tropospheric NO 2 from space: retrieval issues and perspectives for.
15. Oktober Oktober Oktober 2012.
We are learning how to read the 24 hour clock
FA03 – Unified Science (S2)
1..
Comparison of X-ray diffraction patterns of La 2 CuO 4+   from different crystals at room temperature Pia Jensen.
Use of Lidar Backscatter to Determine the PBL Heights in New York City, NY Jia-Yeong Ku, Chris Hogrefe, Gopal Sistla New York State Department of Environmental.
25 seconds left…...
: 3 00.
5 minutes.
Introduction to data assimilation in meteorology Pierre Brousseau, Ludovic Auger ATMO 08,Alghero, september 2008.
We will resume in: 25 Minutes.
Bell Schedules Club Time is available from 8:05-8:20  1 st 8:20 – 9:15  2 nd 9:20 – 10:10  3 rd 10:15 – 11:05  4 th 11:10 – 12:50 A(11:10)
Clock will move after 1 minute
Select a time to count down from the clock above
Murach’s OS/390 and z/OS JCLChapter 16, Slide 1 © 2002, Mike Murach & Associates, Inc.
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE Logo optimisé par J.-D.Bonjour, SI-DGR WMO TECO 4-6 December 2006 New optical remote sensing instruments.
Studying the Physical Properties of the Atmosphere using LIDAR technique Dinh Van Trung and Nguyen Thanh Binh, Nguyen Dai Hung, Dao Duy Thang, Bui Van.
Measured parameters: particle backscatter at 355 and 532 nm, particle extinction at 355 nm, lidar ratio at 355 nm, particle depolarization at 355 nm, atmospheric.
NDACC Working Group on Water Vapor NDACC Working Group on Water Vapor Bern, July 5 -7, 2006 Raman Lidar activities at Rome - Tor Vergata F.Congeduti, F.Cardillo,
Atmospheric Measurements at Capel Dewi field station Prof. Geraint Vaughan.
Scanning Raman Lidar Error Characteristics and Calibration For IHOP David N. Whiteman/NASA-GSFC, Belay Demoz/UMBC Paolo Di Girolamo/Univ. of Basilicata,
UAH Ground-based Ozone Lidar - A New NDACC Lidar Station Member NDACC Lidar Working Group Meeting, NASA/JPL, Table Mountain, CA Nov. 4, 2013
David N. Whiteman/NASA-GSFC, Belay Demoz/UMBC
Lidar Profiling of the Atmosphere
G O D D A R D S P A C E F L I G H T C E N T E R Goddard Lidar Observatory for Winds (GLOW) Wind Profiling from the Howard University Beltsville Research.
Raman lidar characterization of PBL structure during COPS Donato Summa a, Paolo Di Girolamo a, Dario Stelitano a, Tatiana Di Iorio b a DIFA, Univ. della.
SIRTA Site Instrumental de Recherche par Télédétection Atmosphérique Martial Haeffelin SIRTA Coordinator CLOUDNET Meeting, Paris May 2002.
Mike Newchurch 1, Shi Kuang 1, John Burris 2, Steve Johnson 3, Stephanie Long 1 1 University of Alabama in Huntsville, 2 NASA/Goddard Space Flight Center,
Micro-Pulse Lidar (MPL)
Measurement Example III Figure 6 presents the ozone and aerosol variations under a light-aerosol sky condition. The intensity and structure of aerosol.
Envisat Validation Workshop Atmospheric Chemistry Validation Team Ground-Based Measurements and Campaign Database Subgroup Comparisons with GOMOS air-density.
Monitoring of Eyjafjallajökull Ash Layer Evolution over Payerne- Switzerland with a Raman Lidar Todor Dinoev, Valentin Simeonov*, and Mark Parlange Swiss.
A new method for first-principles calibration
Atmosphere. What makes up our atmosphere?  Nitrogen  Oxygen  Argon.
Layers of the Atmosphere Layer NameAltitude (km) Temperature change with altitude.
UNIVERSITY OF BASILICATA CNR-IMAA (Consiglio Nazionale delle Ricerche Istituto di Metodologie per l’Analisi Ambientale) Tito Scalo (PZ) Analysis and interpretation.
Aerosol extinction coefficient (Raman method)
Latmos UPMC/CNRS - ILRC 2015
Regional Radiation Center (RRC) II (Asia)
Summary Sondes RS 80 has dry bias. RS 92 virtually without bias
Huailin Chen, Bruce Gentry, Tulu Bacha, Belay Demoz, Demetrius Venable
1. How many layers are there in Earth’s atmosphere
The Atmosphere.
6.1: Properties of the Atmosphere
Instrument operation update (NO science)
Payerne station operations
Eureka Stratospheric Ozone Differential Absorption LIDAR:
Eureka Stratospheric Ozone Differential Absorption LIDAR revived
Presentation transcript:

Misura del vapor dacqua in atmosfera mediante Lidar Raman F.Congeduti, P.DAulerio, T.Colavitto, P.Sanò, F.Cardillo (CNR, Istituto di Scienze dellAtmosfera ed il Clima, sezione di Roma-Tor Vergata) Congresso SIF Torino

System design

TRANSMITTER Laser Nd:YAG Continuum Powerlite 8010 Energy: nm, nm, Pulse repetition rate:10 Hz Pulse duration: 7 ns Beam divergences: 0.2 mrad (with 4 beam expanders) RECEIVER Collector 1: Single newtonian F/3 telescope (nighttime & daytime) Diameter:0.15 m Field of view:1.8 mrad for lower range elastic baksc. Collector 2: Single newtonian F/3 telescope Diameter: 0.3 m Field of view: 0.9 mrad (nighttime), 0.45 mrad (daytime) for lower range Raman backsc. and middle range elastic backsc. Collector 3: Array of 9 newtonian F/3 telescopes (nighttime) Diameter:0.5 m each (total collecting area 1.75 m 2 ) Field of view:0.6 mrad for upper range Raman backsc. and upper range elastic backsc. System design

Acquisition resolution Usual data elaboration resolution in altitude: 75 m in altitude: 75 m up to 6 km 525 m above 6 km (7-point smooth.) in time: 1 min in time: min (mostly 20 min) System design Atmospheric Quantities Vertical profiles of water vapor from ~75 m up to the upper troposphere Vertical profiles of temperature in the upper stratosphere and mesosphere Vertical profiles of aerosol from ~200 m up to the stratosphere Cloud location Boundary Layer structure and top Calibration / validation through radiosonde of Meteorological Service of A.M in Pratica di Mare, 25 km S.W. of lidar station

WV profiles in the upper/lower troposphere Lidar (upper channels) Lidar (lower channels) RDS of Pratica di Mare (23:02 UT)

WV measurements in the upper/lower troposphere Log contour of merged profiles (20-min integration; matching at 4 km)

Statistical uncertainties

Statistical uncertainties Performance improvement in high humidity conditions RDS of Pratica di Mare, 25 km S.W. of the lidar station (23:09 UT) Lidar, upper channels (20-min integration)

Statistical uncertainties Performance improvement of in high humidity conditions

Daytime profiles RDS of Pratica di Mare, (7:00 LT) Lidar lower channels (20-min integration)

PBL – Diurnal Cycle

Confronto Roma Tor Vergata – Roma centro (La Sapienza) 15:00 18:30 22:00 01:30 05:00 08:30 12:00 Time (UT) 17:20 19:00 20:40 22:20 00:00 01:40 03:20 Time (UT)

ITALIAN GROUPS University of Rome (WV & aerosol Raman Lidar,Sodar,MFRSR) CNR-ISAC (WV & aerosol Raman Lidar, Sodar) University of LAquila (weather forecast,lidar assimilation) University of LAquila (WV & aerosol Raman Lidar, soundings) CNR-IMAA (WV & aerosol Raman Lidar,soundings) University of Basilicata (WV & T & aerosol Raman Lidar) University of Napoli (WV & aerosol Raman Lidar) Univeristy of Lecce (WV & aerosol Raman Lidar, soundings) Enea –Lampedusa (soundings, aereosol Lidar) Italian participation in LAUNCH campaign (International Lindenberg campaign for assessment of humidity and cloud profiling systems and its impact on high resolution modeling) 12 Sept- 28 Oct 2005