CSE 573 Artificial Intelligence Dan Weld Peng Dai www.cs.washington.edu/education/courses/cse573/08au.

Slides:



Advertisements
Similar presentations
Additional Topics ARTIFICIAL INTELLIGENCE
Advertisements

Intelligent Agents Chapter 2.
Intelligent Agents Russell and Norvig: 2
Artificial Intelligence: Chapter 2
Intelligent Agents Chapter 2. Outline Agents and environments Agents and environments Rationality Rationality PEAS (Performance measure, Environment,
Chapter 2 Intelligent Agents
January 11, 2006AI: Chapter 2: Intelligent Agents1 Artificial Intelligence Chapter 2: Intelligent Agents Michael Scherger Department of Computer Science.
CSE 471/598, CBS 598 Intelligent Agents TIP We’re intelligent agents, aren’t we? Fall 2004.
Cooperating Intelligent Systems Intelligent Agents Chapter 2, AIMA.
ICS-171: Notes 2: 1 Intelligent Agents Chapter 2 ICS 171, Fall 2005.
Intelligent Agents Chapter 2 ICS 171, Fall 2005.
Plans for Today Chapter 2: Intelligent Agents (until break) Lisp: Some questions that came up in lab Resume intelligent agents after Lisp issues.
CSE 471/598 Intelligent Agents TIP We’re intelligent agents, aren’t we? Spring 2004.
Intelligent Agents Chapter 2.
Rutgers CS440, Fall 2003 Lecture 2: Intelligent Agents Reading: AIMA, Ch. 2.
Agents & Environments. © Daniel S. Weld Topics Agents & Environments Problem Spaces Search & Constraint Satisfaction Knowledge Repr’n & Logical.
Rational Agents (Chapter 2)
Carla P. Gomes CS4700 CS 4700: Foundations of Artificial Intelligence Carla P. Gomes Module: Structure of intelligent agents and environments.
CSE 471/598 Intelligent Agents TIP We’re intelligent agents, aren’t we?
Intelligent Agents: an Overview. 2 Definitions Rational behavior: to achieve a goal minimizing the cost and maximizing the satisfaction. Rational agent:
Rational Agents (Chapter 2)
For Wednesday Read chapter 3, sections 1-4 Homework: –Chapter 2, exercise 4 –Explain your answers (Identify any assumptions you make. Where you think there’s.
Intelligent Agents Chapter 2. Outline Agents and environments Rationality PEAS (Performance measure, Environment, Actuators, Sensors) Environment types.
CPSC 7373: Artificial Intelligence Jiang Bian, Fall 2012 University of Arkansas at Little Rock.
Intelligent Agents. Software agents O Monday: O Overview video (Introduction to software agents) O Agents and environments O Rationality O Wednesday:
1 AI and Agents CS 171/271 (Chapters 1 and 2) Some text and images in these slides were drawn from Russel & Norvig’s published material.
Introduction to AI. H.Feili, 1 Introduction to Artificial Intelligence LECTURE 2: Intelligent Agents What is an intelligent agent?
CHAPTER 2 Intelligent Agents. Outline Agents and environments Rationality PEAS (Performance measure, Environment, Actuators, Sensors) Environment types.
SWARM INTELLIGENCE Sumesh Kannan Roll No 18. Introduction  Swarm intelligence (SI) is an artificial intelligence technique based around the study of.
Chapter 2 Intelligent Agents. Chapter 2 Intelligent Agents What is an agent ? An agent is anything that perceiving its environment through sensors and.
Intelligent Agents Chapter 2 Some slide credits to Hwee Tou Ng (Singapore)
Lection 3. Part 1 Chapter 2 of Russel S., Norvig P. Artificial Intelligence: Modern Approach.
Outline Agents and environments Rationality PEAS (Performance measure, Environment, Actuators, Sensors) Environment types Agent types Artificial Intelligence.
Intelligent Agents Chapter 2. CIS Intro to AI - Fall Outline  Brief Review  Agents and environments  Rationality  PEAS (Performance measure,
© 2004 Kurfess CalPoly edited by Eggen Introduction 1 CAP 4630/5605: Artificial Intelligence Computer Science Department University of North Florida.
Chapter 2 Agents & Environments. © D. Weld, D. Fox 2 Outline Agents and environments Rationality PEAS specification Environment types Agent types.
Intelligent Agents Chapter 2. Outline Agents and environments Rationality PEAS (Performance measure, Environment, Actuators, Sensors) Environment types.
Intelligent Agents Chapter 2. Agents An agent is anything that can be viewed as perceiving its environment through sensors and acting upon that environment.
Agents CPSC 386 Artificial Intelligence Ellen Walker Hiram College.
Chapter 2 Hande AKA. Outline Agents and Environments Rationality The Nature of Environments Agent Types.
CE An introduction to Artificial Intelligence CE Lecture 2: Intelligent Agents Ramin Halavati In which we discuss.
CHAPTER 2 Intelligent Agents. Outline Artificial Intelligence a modern approach 2 Agents and environments Rationality PEAS (Performance measure, Environment,
Introduction of Intelligent Agents
Instructional Objective  Define an agent  Define an Intelligent agent  Define a Rational agent  Discuss different types of environment  Explain classes.
Rational Agency CSMC Introduction to Artificial Intelligence January 8, 2007.
Rational Agency CSMC Introduction to Artificial Intelligence January 8, 2004.
Artificial Intelligence
Intelligent Agents Chapter 2. Outline Agents and environments Rationality PEAS (Performance measure, Environment, Actuators, Sensors) Environment types.
Feng Zhiyong Tianjin University Fall  An agent is anything that can be viewed as perceiving its environment through sensors and acting upon that.
Intelligent Agents Chapter 2. Outline Agents and environments Rationality PEAS (Performance measure, Environment, Actuators, Sensors) Environment types.
1/23 Intelligent Agents Chapter 2 Modified by Vali Derhami.
Intelligent Agents Introduction Rationality Nature of the Environment Structure of Agents Summary.
Chapter 2 Agents. Intelligent Agents An agent is anything that can be viewed as perceiving its environment through sensors and acting upon that environment.
CSE 471/598 Intelligent Agents TIP We’re intelligent agents, aren’t we?
CSE 573 Artificial Intelligence Dan Weld Xu Miao
Chapter 2 Agents & Environments
Lecture 2: Intelligent Agents Heshaam Faili University of Tehran What is an intelligent agent? Structure of intelligent agents Environments.
CPSC 420 – Artificial Intelligence Texas A & M University Lecture 2 Lecturer: Laurie webster II, M.S.S.E., M.S.E.e., M.S.BME, Ph.D., P.E.
Agents 지능형 에이전트 프로그램. Agent 지각, 인식  추론, 판단  행위 환경 에이전트.
Intelligent Agents. Outline Agents and environments Rationality PEAS (Performance measure, Environment, Actuators, Sensors) Environment types Agent types.
Intelligent Agents Chapter 2.
Intelligent Agents Chapter 2.
Hong Cheng SEG4560 Computational Intelligence for Decision Making Chapter 2: Intelligent Agents Hong Cheng
© James D. Skrentny from notes by C. Dyer, et. al.
Intelligent Agents Chapter 2.
Intelligent Agents Chapter 2.
Intelligent Agents Chapter 2.
Intelligent Agents Chapter 2.
Intelligent Agents Chapter 2.
Presentation transcript:

CSE 573 Artificial Intelligence Dan Weld Peng Dai

© Daniel S. Weld 2 Logistics: Reading for next class Finish R&N chapter 3 Start chapter 4 (thru 4.2) How do you find the book?

© Daniel S. Weld 3 Topics Intro: overview, agents Search: problem spaces, heuristic generation, CSPs Knowledge representation: prop & 1 st logic Planning: time, regression, SAT compile, … Learning: dec trees, overfitting, bias, ensembles, semi supervision Uncertainty: stat learning, HMMs, DBNs, Markov networks, EM Natural language: information extraction Planning under uncertainty: MDPS, reinforcement learning Special topics

© Daniel S. Weld 4 What is an ‘Agent’?

© Daniel S. Weld Intelligent Agents Have sensors, effectors Implement mapping from percept sequence to actions Performance measure Environment Agent percepts actions

© Daniel S. Weld Agent Function vs. Program What is an ‘agent function’? “If we can specify the agent’s choice of action for every possible percept sequence, then we have said more or less everything there is to say about the agent.” – R&N Environment Agent percepts actions

© Daniel S. Weld 7 Are Toasters Agents?

© Daniel S. Weld Defn: Ideal rational agent Rationality vs omniscience? Acting in order to obtain valuable information “For each possible percept sequence, does whatever action is expected to maximize its performance measure on the basis of evidence perceived so far and built-in knowledge.''

© Daniel S. Weld Defn: Autonomy An agent is autonomous to the extent that its behavior is determined by its own experience Why is this important? The parable of the dung beetle

© Daniel S. Weld Implementing ideal rational agent Table lookup agents Agent program Simple reflex agents Agents with memory Reflex agent with internal state Goal-based agents Utility-based agents

© Daniel S. Weld Simple reflex agents ENVIRONMENT AGENT Effectors Sensors what world is like now Condition/Action rules what action should I do now?

© Daniel S. Weld Reflex agent with internal state ENVIRONMENT AGENTEffectors Sensors what world is like now Condition/Action rules what action should I do now? What world was like How world evolves

© Daniel S. Weld Goal-based agents ENVIRONMENT AGENT Effectors Sensors what world is like now Goals what action should I do now? What world was like How world evolves what it’ll be like if I do acts A 1 -A n What my actions do

© Daniel S. Weld Utility-based agents ENVIRONMENT AGENT Effectors Sensors what world is like now Utility function what action should I do now? What world was like How world evolves What my actions do How happy would I be? what it’ll be like if I do acts A 1 -A n

© Daniel S. Weld Properties of Environments Observability: full vs. partial vs. non Deterministic vs. stochastic Episodic vs. sequential Static vs. … vs. dynamic Discrete vs. continuous Travel agent WWW shopping agent Coffee delivery mobile robot