1 Fly-back Converter fall 2012. 2 Basic Topology of a Fly-back Converter.

Slides:



Advertisements
Similar presentations
3.1 Ideal Diodes Forward bias (on) Reverse bias (off)
Advertisements

Forward Type Switched Mode Power Supply
Chapter 2 AC to DC CONVERSION (RECTIFIER)
EE462L, Spring 2014 DC−DC SEPIC (Converter)
Fly-Back Type Switched Mode Power Supply
DC Choppers 1 Prof. T.K. Anantha Kumar, E&E Dept., MSRIT
Instructor: Po-Yu Kuo (郭柏佑) 國立雲林科技大學 電子工程系
Introduction to DC-DC Conversion – Cont.
DC Choppers 1 Prof. T.K. Anantha Kumar, E&E Dept., MSRIT
Switched-Mode DC Power Supplies Five configurations –Flyback –Forward –Push-pull –Half Bridge –Full-Bridge Operate at high frequencies –Easy to filter.
9/29/2004EE 42 fall 2004 lecture 131 Lecture #13 Power supplies, dependent sources, summary of ideal components Reading: Malvino chapter 3, Next:
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lecture 23 Operating Modes of the Series Resonant Converter Lecture 23 Resonant.
Presented By: Er. Ram Singh (Asstt. Prof.) Deptt. Of EE
Copyright by UNIT III DC Choppers 4/17/2017 Copyright by
Transformers.
EKT214 - ANALOG ELECTRONIC CIRCUIT II
DC-DC Fundamentals 1.3 Switching Regulator
Chapter 20: Circuits Current and EMF Ohm’s Law and Resistance
Chapter 22 Alternating-Current Circuits and Machines.
Application of power electronics
Power Electronics and Drives (Version ) Dr. Zainal Salam, UTM-JB 1 Chapter 3 DC to DC CONVERTER (CHOPPER) General Buck converter Boost converter.
Electrical Circuits Dr. Sarika Khushalani Solanki
BENE 1113 PRINCIPLES OF ELECTRICAL AND ELECTRONICS
Alternating Current Circuits
9/27/2004EE 42 fall 2004 lecture 121 Lecture #12 Circuit models for Diodes, Power supplies Reading: Malvino chapter 3, Next: 4.10, 5.1, 5.8 Then.
Clippers & Clampers Zener diode application. Clippers Clippers or diode limiting is a diode network that have the ability to “clip” off a portion on the.
RECTIFICATION Normal household power is AC while batteries provide DC, and converting from AC to DC is called rectification. Diodes are used so commonly.
Electromagnetism Topic 12.2 Alternating Current. Rotating Coils Most of our electricity comes from huge generators in power stations. Most of our electricity.
DC−DC Buck Converter 1. DC-DC switch mode converters 2.
UNIT-1 Rectifiers & Power Supplies. Rectifier A rectifier is an electrical device that converts alternating current (AC), which periodically reverses.
Chapter 31 Faraday’s Law.
Lecture # 12&13 SWITCHING-MODE POWER SUPPLIES
Instrumentation & Power Electronics
Introduction to DC-DC Conversion – Cont.
Chapter 1 Common Diode Applications Basic Power Supply Circuits.
Best 3 Applications Involving in Zener Diode Working Functionality.
Full Wave Rectifier Circuit with Working Theory
Different Types of Voltage Regulators with Working Principle.
Full Wave Rectifier NavigationTutorial: 6 of 8 The Full Wave Rectifier In the previous Power Diodes tutorial we discussed ways of reducing the ripple or.
بحث مشترك منشور فى مؤتمر دولى متخصص (منشور ، التحكيم علي البحث الكامل) B. M. Hasaneen and Adel A. Elbaset البحث التاسع 12 th International Middle East.
Recall Lecture 8 Full Wave Rectifier Rectifier Parameters
UNIT III DC Choppers.
Half-wave Rectifier.
Chapter 13 Ideal Transformers
SMPS.
Zero-current Switching Quasi-resonant Converters
Rectifiers, Inverters & Motor Drives
Ideal Transformers Chapter Objectives:
Rectifiers and Filters
EET426 Power Electronics II
Recall Lecture 7 Voltage Regulator using Zener Diode
DC-DC PWM Converters Lecture Note 5.
Transformer -Types & Applications
DC Choppers 1 MH1032/brsr/A.Y /pe/DC CHOPPERS
Electromechanical Systems
Buck-derived full-bridge converter
electronics fundamentals
UNIT-7 CHOPPERS 12/1/2018.
Recall Lecture 8 Full Wave Rectifier Rectifier Parameters
Reading: Malvino chapter 3, Next: 4.10, 5.1, 5.8
Review Half Wave Full Wave Rectifier Rectifier Parameters
DC-DC Switch-Mode Converters
Chapter 14.
Alternating Current Circuits
Review Half Wave Full Wave Rectifier Rectifier Parameters
TRANSFORMERS Transformers are not semi conductor devices, however, they play an integral role in the operations of most of power supplies. The basic schematic.
Dr. Unnikrishnan P.C. Professor, EEE
POWER ELECTRONICS DC-DC CONVERTERS (CHOPPERS) PART 2
POWER ELECTRONICS DC-DC CONVERTERS (CHOPPERS) PART 1
Chapter 5 Isolated Switch-Mode dc-to-dc Converters
Presentation transcript:

1 Fly-back Converter fall 2012

2 Basic Topology of a Fly-back Converter

3 Fly-back Converter Fly-back converter is the most commonly used SMPS circuit Low output power applications The output voltage needs to be isolated from the input main supply The output power may vary from few watts to less than 100 watts.

4 Fly-back Converter The circuit can offer single or multiple isolated output voltages Operate over wide range of input voltage variation. In respect of energy-efficiency, fly-back power supplies are inferior to many other SMPS circuits but its simple topology and low cost makes it popular in low output power range. Typical efficiency of a fly- back converter is around 65%-75%.

5 Principle of Operation Mode-1 When switch ‘S’ is on, the primary winding of the transformer gets connected to the input supply with its dotted end connected to the positive side. At this time the diode ‘D’ connected in series with the secondary winding gets reverse biased due to the induced voltage in the secondary (dotted end potential being higher).

6 Mode-1 Equivalent Circuit Mode 1: Switch is ON; Diode is OFF; At the end of Mode-1, energy stored in the primary winding is

7 Principle of Operation Mode-2 Mode 2: Switch is OFF, Diode is ON When Switch turns off, the current in the primary winding drops suddenly, the voltage across the primary winding reverses. The diode becomes forward biased.

8 The secondary winding, while charging the output capacitor (and feeding the load), starts transferring energy from the magnetic field of the fly back transformer to the output in electrical form. If the off period of the switch is kept large, the secondary current gets sufficient time to decay to zero and magnetic field energy is completely transferred to the output capacitor and load. Flux linked by the windings remain zero until the next turn-on of the switch, and the circuit is under discontinuous flux mode of operation. Alternately, if the off period of the switch is small, the next turn on takes place before the secondary current decays to zero. The circuit is then under continuous flux mode of operation.

9 Mode-2 Equivalent Circuit The primary and secondary windings of the fly- back transformer don’t carry current simultaneously The fly-back transformer works differently from a normal transformer.

10 Continuous Conduction Mode

Principle of Operation Mode-3 11 After complete transfer of the magnetic field energy to the output, the secondary winding emf as well as current fall to zero and the diode in series with the winding stops conducting. The output capacitor however continues to supply uninterrupted voltage to the load. This part of the circuit operation has been referred to as Mode-3 of the circuit operation Discontinuous Conduction Mode

Mode-3 Equivalent Circuit 12 During discontinuous mode, MOSFET is OFF; Diode is OFF. The output capacitor continues to supply uninterrupted voltage to the load. Discontinuous Conduction Mode

13 Discontinuous Conduction Mode

14 CCM vs DCM Flyback Waveform A smaller transformer can be used in DCM operation There are pros and cons of DCM operation. DCM advantages: smaller transformer, better stability, lower RFI, etc.

Circuit Equations under CCM 15 The primary winding current rises from I P to I o in  T time. I P – I o = (E dc / L pri )  T Under steady state Energy to the primary winding during each ON transition E dc x 0.5x(I p + I o )  T Output energy in each cycle V o I load T E dc x 0.5x(I p + I o )  T = V o I load T The mean(dc) voltage across primary and secondary windings must be zero Switch is ON, primary winding voltage equals input voltage. Switch is OFF, the reflected secondary voltage across the primary winding. E dc  = (N 1 /N 2 )V o (1-  ) Required ratings for switch V switch =E dc + (N 1 /N 2 )V o Required ratings for diode V diode =V o +E dc (N 1 /N 2 )

Circuit Equations under DCM 16 At the end of Mode-1, the magnetic field energy rises to (1/2)L pri I p 2, The entire energy is transferred to the output at the end of Mode-2 assuming loss-less operation. The output power P o = (1/2)L pri I p 2 f switch Under DCM we have E dc  ≤ (N 1 /N 2 )V o (1-  ) Average voltage across windings over a switching cycle is still zero. The inequality sign is due to the fact that during part of OFF period of switch (1-  )T, the winding voltages are zero. The expression for V switch and V diode still holds.

A Practical Fly-Back Converter 17 Due to the non-ideal coupling between the primary and secondary windings when the primary side switch is turned off some energy is trapped in the leakage inductance of the winding. The energy associated with the leakage flux needs to be dissipated in an external circuit (known as snubber). Unless this energy finds a path to dissipate, there will be a large voltage spike across the windings which may destroy the circuit. The snubber circuit consists of a fast recovery diode in series with a parallel combination of a snubber capacitor and a resistor

18 A Practical Fly-Back Converter

Snubber 19 In order that snubber capacitor does not take away any energy stored in the mutual flux of the windings, the minimum steady state snubber capacitor voltage should be greater than the reflected secondary voltage on the primary side, Vc > Vo x N1/N2 by keeping RC time constant of the snubber >> switching time period. For initial powering up of the circuit the control power is drawn from the input supply through a resistor R s

20 Answer: c

21 Answer: a

22 Answer: d

23 Answer: c

24 When the switch is ON, energy transferred to the primary inductance is W = (1/2) L pri i pp where i pp is the peak primary current Power to the load is P o = W/T = (1/2) L pri i pp 2 /T where T is the switching period i pp = V in t on / L pri P o = V o 2 /R L V o 2 /R L = (1/2) L pri (V in 2 t on 2 / L pri 2 ) (1/T) V o = V in t on (R L f s /2L pri ) 1/2

25 An Example from National Semiconductor

26 For low output power applications, a clamp zener or a transient suppressor can be used as shown on the flyback application of the LM3488 datasheet. A typical snubber circuit is a resistance and a capacitor connected in series between the input voltage and the drain of the mosfe