Seema Zargar.  Most diverse and abundant tissue  Main classes ◦ Connective tissue proper ◦ Cartilage ◦ Bone tissue ◦ Blood  Characteristics ◦ Mesenchyme.

Slides:



Advertisements
Similar presentations
Section 11: Extracellular Macromolecules
Advertisements

Proteins Topic 2.4 IBHL Biology. Introduction Proteins are a very important biological molecules that are involved in almost every activity that organisms.
Structure-function relationship: Fibrous proteins
Protein Structure and Function Review: Fibrous vs. Globular Proteins.
Collagen Synthesised by VSMC and VEC (perhaps) –soluble procollagen  excreted –cross linked –‘insoluble’ tropocollagen’ –assembled into a fibril (details.
Where do you find CT?. What are the fibers in CT? What cells hang out in CT?
Do Now Observe the following slide. Identify the type of epithelium present. What else is present in this slide?
DR AMINA TARIQ BIOCHEMISTRY
Biochemistry of connective tissue.
CLINICAL ASPECTS OF BIOCHEMISTRY PROTEINS AND DISEASE - LECTURES 1 & 2 MIKE WALLIS Two main groups (a) keratin, myosin, fibrinogen - mainly alpha helix.
Collagen, elastin and keratin
4 Tissue: The Living Fabric Part B. Modes of Secretion  Merocrine – products are secreted by exocytosis (e.g., pancreas, sweat, and salivary glands)
Connective Tissue Loose connective tissue Blood…why? Cartilage
Connective Tissue A study in diversity. Connective Tissue.
FIBROUS PROTEINS MALIK ALQUB MD. PHD..
Tissues Whole body contains only 200 different cells types that are organized into tissues The extracellular fluid surrounding the cells organized into.
Connective Tissue The dense layer of the basal lamina of all epithelial tissue is created by connective tissue. Connective tissue connects the epithelium.
Collagen.
HISTOLOGY A&P 1.
Holding it all together!
7.5: PROTEINS Proteins Function Structure. Function 7.5.4: State four functions of proteins, giving a named example of each. [Obj. 1] Proteins are the.
Connective Tissue.
TISSUE The Living Fabric. Pages Section 1.
Connective Tissues.
Connective Tissues.
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings Human Anatomy & Physiology, Sixth Edition Elaine N. Marieb PowerPoint ® Lecture.
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings Human Anatomy & Physiology, Sixth Edition Elaine N. Marieb PowerPoint ® Lecture.
Bell Ringer:List one type of muscle and epithelial tissue and list one location of each. Objectives: Compare and contrast the types of connective tissues.
THE STRUCTURE AND FUNCTION OF MACROMOLECULES Proteins - Many Structures, Many Functions 1.A polypeptide is a polymer of amino acids connected to a specific.
Tissues -Whole body contains only 200 different cells types that are organized into tissues Four primary tissue classes –epithelial tissue –connective.
Connective Tissue.
Connective Tissue, Specialized Tissue and Repair
Specialized Cells Extracellular protein fibers Ground substance=fluid
These elastin proteins are not from human sources-they are typically harvested from either cows or birds Because it comes from animals it makes better.
Collagen.  Collagen and Elastin are examples of common,well- characterized fibrous proteins that serve structural functions in the body.  They are found.
Connective Tissue ANSC 590 Animal Growth and Development Karey L. McPhee Sept. 2, 2008.
Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Tissues  Groups of cells similar in structure and function  Most organs contain.
Connective tissue cells surrounded by an extracellular matrix Constituents: collagen & elastic fibers ground substance = tissue fluid (blood ultrafiltrate)
2- Proteins 3 1.A polypeptide is a polymer of amino acids connected in a specific sequence 2.A protein’s function depends on its specific conformation.
Structure-Function relationship Nafith Abu Tarboush DDS, MSc, PhD
Bone Metabolism MSS,Fall Nabil Bashir.
Tissue: The Living Fabric Anatomy and Physiology.
Modes of Secretion 1. Merocrine – secretion by exocytosis (pancreas, sweat, and salivary glands) 2. Holocrine – secretion by rupture of cells (sebaceous.
Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Human Anatomy & Physiology SEVENTH EDITION Elaine N. Marieb Katja Hoehn PowerPoint.
Lesson 6.  Textbooks  Repro  Page 8-9 of ppq  Comparison sheet.
Fibrous proteins ELASTIN.
Enzymatic disaggregation
FIBROUS PROTEINS COLLAGEN.
FIBROUS PROTEINS COLLAGEN.
Connective tissue Section 5.3.
Proteins What do we need proteins for?
UNIT I: Protein Structure and Function
Connective Tissue Found throughout the body; most abundant and widely distributed in primary tissues Connective tissue proper Cartilage Bone Blood.
Tissues, Part 2: Connective Tissue
Fibrous Proteins.
Fibrous proteins ELASTIN.
Creatine Metabolism and Collagen Diseases
CONNECTIVE TISSUE (C.T.)
Ch. 4 Part 3 Connective tissues.
Do Now Observe the following slide. Identify the type of epithelium present. What else is present in this slide?
Connective Tissue -It binds body structures together or provide a framework for the body. - It Supports, binds, and separates specialized structures of.
Proteins.
Connective Tissue Notes
Do now activity #2 Name the 4 major types of tissues found in the body. What does it mean when we say that epithelial tissues are avascular? What does.
Collagen.
Tissue: The Living Fabric
Creatine metabolism and collagen diseases
Creatine metabolism and collagen diseases
FIBROUS PROTEINS COLLAGEN.
Connective Tissue.
Presentation transcript:

Seema Zargar

 Most diverse and abundant tissue  Main classes ◦ Connective tissue proper ◦ Cartilage ◦ Bone tissue ◦ Blood  Characteristics ◦ Mesenchyme as their common tissue of origin (mesenchyme derived from mesoderm) ◦ Varying degrees of vascularity ◦ Nonliving extracellular matrix, consisting of ground substance and fibers ◦ Cells are not as abundant nor as tightly packed together as in epithelium

 Enclose organs as a capsule and separate organs into layers. Areolar  Connect tissues to one another. Tendons and ligaments.  Support and movement. Bones.  Storage. Fat  Insulation. Fat.  Transport. Blood.  Protection. Bone, cells of the immune system.

 Ground substance – unstructured material that fills the space between cells  Fibers – collagen, elastic, or reticular  Cells – fibroblasts, chondroblasts, osteoblasts, hematopoietic stem cells, and others.  Collagen is the main protein of connective tissue in animals and the most abundant protein in mammals, making up about 25% of the total protein content.

 Connective tissue can be classified into three categories:  proper,  embryonic,  specialized

 Embryonic: Is further divided into mesenchyme and mucoid.  Specialized: Is further divided into bone, cartilage and blood.  Connective tissue proper: Is further divided into elastic tissue, reticular tissue, adipose tissue, areolar (loose tissue) and dense tissue.

 Collagen is rich in proline and glycine, both of which are important in the formation of the triple-stranded helix. Proline facilitates the formation of the helical conformation of each αchain because its ring structure causes “kinks”in the peptide chain. Glycine, the smallest amino acid, is found in every third position of the polypeptide chain. It fits into the restricted spaces where the three chains of the helix come together. The glycine residues are part of a repeating sequence, - Gly–X–Y–, where X is frequently proline and Y is often hydroxyproline(but can be hydroxylysine,).  Most of the α-chain can be regarded as a polytripeptide whose sequence can be represented as (–Gly–Pro–Hyp–)

Endoplasmic Reticulum mRNA attached to ER protein synthesized into ER lumen cotranslational and post- translational modifications 3 proto-a-chains form soluble procollagen moved to golgi apparatus Golgi Apparatus packed into secretion vesicles fuse with membrane Outside Cell procollagen processed by enzymes outside cell assemble into collagen fibers collagen fibrils form lateral Interactions of triple helices

Collagen biosynthesis

 Tropocollagen has a mass of about 285 kdal and consist of three polypeptide chains. Tropocollagen -280 nm long -head & tail region  30% glycine, 30% proline& hydroxyproline re-aggregate -native collagen (64nm)  non Covalent hydrogen bonding between the three αchain is via hydroxyproline.  tropocollagenpolarized in fiber, 1/4 staggered array –period accounted for by gaps fall in dark bands

 Collagen fibres exhibit crosssstriations every 640A.  The length of the tropocollagenmolecule s 2800A.  There is a gap of 400oA between the end of one tropocollagenand the start of another. This gap play an important role in mineralization process.

 Lysyl oxidase is an extracellular copper enzyme that catalyzes formation of aldehydes from lysine residues in collagen and elastin precursors. These aldehydes are highly reactive, and undergo spontaneous chemical reactions with other lysyl oxidase-derived aldehyde residues, or with unmodified lysine residues. This results in cross-linking collagen and elastin, which is essential for stabilization of collagen fibrils and for the integrity and elasticity of mature elastin.  Complex cross-links are formed in collagen called Pyridinoline which is derived from three lysine residues.

 The temperature at which half of the helical structure is lost is called the melting temperature™.  The Tm of tropocollagenis a criterion of the stability of its helical structure. Tm depends on the body temperature of the source species. collagens from icefishhas the lowest Tm while warm blooded animals have the highest Tm. This difference in thermal stability is correlated with the contents of iminoacid (prolineand hydroxyproline) in the collagen. The higher the iminoacid content, the more stable the helix. Tm of (pro-pro-Gly) is 24C while poly (Pro-Hyp-Gly) is 580C indicating hydroxylation stabilizes triple helix.  The experiments using αα\-bipyridylan iron chelatorwhich inhibit hydroxylation shows that without hydroxylation triple helix formation does not occur.

 Source: Clostridium histolyticum I.U.B.:  Crude collagenase preparations contain not only several collagenases but also a sulfhydryl protease, clostripain, a trypsin-like enzyme, and an aminopeptidase. This combination of collagenolytic and proteolytic activities is effective at breaking down intercellular matrices, the essential part of tissue dissociation. One component of the complex is a hydrolytic enzyme which degrades the helical regions in native collagen preferentially at the Y-Gly bond in the sequence Pro-Y-Gly-Pro- where Y is most frequently a neutral amino acid. This cleavage yields products susceptible to further peptidase digestion. Crude collagenase is inhibited by metal chelating agents such as cysteine, EDTA or o-phenanthroline but not DFP. It is also inhibited by α2-macroglobulin, a large plasma glycoprotein. Ca 2+ is required for enzyme activity. Particular enzymatic profiles of each collagenase have been correlated with the tissues from which the cells for study were obtained (or with the uses to which the cells are put) and as a result of the correlations several types of crude collagenases have been established by Worthington: Types 1, 2, 3, and 4.

 Type 1 crude collagenase has the original balance of collagenase, caseinase, clostripain and tryptic activities.  Type 2 contains higher relative levels of protease activity particularly clostripain.  Type 3 contains lowest levels of secondary proteases.  Type 4 is designed to be especially low in tryptic activity to limit damage to membrane proteins and receptors.

 Elastin is a protein in connective tissue that is elastic and allows many tissues in the body to resume their shape after stretching or contracting. Elastin helps skin to return to its original position when it is poked or pinched. Elastin is also an important load-bearing tissue in the bodies of vertebrates and used in places where mechanical energy is required to be stored. In humans, elastin is encoded by the ELN gene.

 Elastic fiber is composed of the protein fibrillin and elastin made of simple amino acids such as glycine, valine, alanine, and proline.  Elastin is made by linking many soluble tropoelastin protein molecules, in a reaction catalyzed by lysyl oxidase, to make a massive insoluble, durable cross-linked array. The amino acid responsible for these cross-links is lysine. Tropoelastin is a specialized protein with a molecular weight of 64 to 66 kDa, and an irregular or random coil conformation made up of 830 amino acids.  Desmosine and isodesmosine are types of links for the tropoelastin molecules.

 Elastin serves an important function in arteries as a medium for pressure wave propagation to help blood flow and is particularly abundant in large elastic blood vessels such as the aorta.  Elastin is also very important in the lungs, elastic ligaments, the skin, and the bladder, elastic cartilage.  It is present in all vertebrates above the jawless fish.

 protein Mr 64 to 66 kDa  composed of the amino acids glycine, valine, alanine, and proline  cross-linked tropoelastin monomers  first secreted as soluble precursors (tropoelastin)  assembly and crosslinking of tropoelastin monomers  form insoluble elastin matrix into functional fibres ◦ lysine residues in the cross-linking domain of secreted tropoelastin rapidly cross-linked (both inter- and intra- molecularly by lysyl oxidase) ◦ hydrophobic segments - elastic properties ◦ α-helical segments (alanine- and lysine-rich) - form cross-links between adjacent molecules