21:The Factor Theorem © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.

Slides:



Advertisements
Similar presentations
“Teach A Level Maths” Vol. 2: A2 Core Modules
Advertisements

“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
28: Harder Stationary Points © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
“Teach A Level Maths” Vol. 2: A2 Core Modules
43: Partial Fractions © Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules.
10: Polynomials © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
40: Radians, Arc Length and Sector Area
12: The Quotient Rule © Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules.
6: Roots, Surds and Discriminant © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
11: The Rule for Differentiation © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
19: Laws of Indices © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
9a: Differentiating Harder Products © Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules.
“Teach A Level Maths” Vol. 1: AS Core Modules
22: Division and The Remainder Theorem © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
22: Division and The Remainder Theorem © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
31: Arithmetic Sequences and Series © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
6: Discriminant © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
20: Stretches © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
15: The Gradient of the Tangent as a Limit © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
24: Indefinite Integration © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
47: More Logarithms and Indices
3: Quadratic Expressions Expanding Brackets and Factorisation © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
9: Linear and Quadratic Inequalities © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
38: The graph of tan  © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
4: Translations and Completing the Square © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
25: Definite Integration © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
8: The Product Rule © Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules.
13: Stationary Points © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
12: Tangents and Gradients © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
8: Simultaneous Equations and Intersections © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
“Teach A Level Maths” Vol. 1: AS Core Modules
Cumulative Distribution Function
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 2: A2 Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
3: Quadratic Expressions Expanding Brackets and
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
17: Circles, Lines and Tangents
“Teach A Level Maths” Vol. 1: AS Core Modules
47: More Logarithms and Indices
40: Radians, Arc Length and Sector Area
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
11: Proving Trig Identities
“Teach A Level Maths” Vol. 2: A2 Core Modules
“Teach A Level Maths” Vol. 2: A2 Core Modules
17: Circles, Lines and Tangents
Presentation transcript:

21:The Factor Theorem © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules

The Factor Theorem Module C1 AQA Edexcel OCRMEI/OCR Module C2 "Certain images and/or photos on this presentation are the copyrighted property of JupiterImages and are being used with permission under license. These images and/or photos may not be copied or downloaded without permission from JupiterImages"

The Factor Theorem A simple quadratic function can be factorised by inspection e.g. Consider The factors are and From the factors, we can see that the zeros of the functions are So, Reversing this process enables us to factorise cubics ( and polynomials of higher degrees )

The Factor Theorem e.g. If is a factor ( Notice the change of sign ) For a polynomial function, the factor theorem says that: if then is a factor

The Factor Theorem Factorising a Cubic Function Solution: Let e.g.1 Find a linear factor of is a factor Once we have found one factor of a cubic, the other factor, which is quadratic, can be found by inspection. Sometimes this quadratic factor will also factorise Try a = 1:

The Factor Theorem These numbers suggest that could be a factor Solution: We use the factor theorem to find one linear factor: e.g.2 Factorise fully The linear factor can only contain numbers that are factors of 8. Let We could try any of is not a factor is a factor So, quadratic factor The quadratic factor can be found by inspection.

The Factor Theorem We first get the and +8

The Factor Theorem We next need but we already haveSo, we need

The Factor Theorem The linear term can be used to check the result. Finally, we need to check whether the quadratic factor will factorise into 2 linear factors. In this example there are no further factors. We have

The Factor Theorem SUMMARY Use the factor theorem to find one linear factor Use inspection to find the quadratic factor Start with the term of the cubic Find the constant Use the term of the cubic to find the middle term of the quadratic factor Factorise the quadratic factor if possible Check factors using the x term of the cubic  Factorising Cubic Functions if then is a factor

The Factor Theorem Exercises Factorise the following cubics:

The Factor Theorem

The following slides contain repeats of information on earlier slides, shown without colour, so that they can be printed and photocopied. For most purposes the slides can be printed as “Handouts” with up to 6 slides per sheet.

The Factor Theorem SUMMARY Use the factor theorem to find one linear factor Use inspection to find the quadratic factor Start with the term of the cubic Find the constant Use the term of the cubic to find the middle term of the quadratic factor Factorise the quadratic factor if possible Check factors using the x term of the cubic  Factorising Cubic Functions if then is a factor

The Factor Theorem Solution: We use the factor theorem to find one linear factor: e.g. Factorise fully Let We could try any of is not a factor is a factor So, quadratic factor The quadratic factor can be found by inspection. In this example the quadratic factor has no linear factors.