Factoring Polynomials

Slides:



Advertisements
Similar presentations
Factoring Polynomials
Advertisements

Warm up Use synthetic division to divide (4x3 – 3x2 + 2x + 1)/ (x – 1) (x3 – x2 – 6)/(x + 2)
Finding Real Roots of Polynomial Equations 6-5
Special Products of Binomials
Warm Up Factor each expression. 1. 3x – 6y 3(x – 2y) 2. a2 – b2
Factoring Polynomials
Warm Up Factor each expression. 1. 3x – 6y 2. a 2 – b 2 3. (x – 1)(x + 3) 4. (a + 1)(a 2 + 1) x 2 + 2x – 3 3(x – 2y) (a + b)(a – b) a 3 + a 2 + a + 1 Find.
Objectives Use the Factor Theorem to determine factors of a polynomial. Factor the sum and difference of two cubes.
Objectives Identify the multiplicity of roots.
Objectives Use the Factor Theorem to determine factors of a polynomial. Factor the sum and difference of two cubes.
Chapter factoring polynomials. Objectives Use the Factor Theorem to determine factors of a polynomial. Factor the sum and difference of two.
Dividing Polynomials 6-3 Warm Up Lesson Presentation Lesson Quiz
Dividing Polynomials 6-3 Warm Up Lesson Presentation Lesson Quiz
Objective Use long division and synthetic division to divide polynomials.
Holt McDougal Algebra 2 Factoring Polynomials How do we use the Factor Theorem to determine factors of a polynomial? How do we factor the sum and difference.
SECTION 3-4 FACTORING POLYNOMIALS Objectives - Use the Factor Theorem to determine factors of a polynomial - Factor the sum and difference of two cubes.
Finding Real Roots of Polynomial Equations 3-5
Holt McDougal Algebra 2 Dividing Polynomials How do we use long division and synthetic division to divide polynomials?
Warm Up Divide using long division ÷ Divide.
Objectives Factor the sum and difference of two cubes.
Solving Polynomials. Factoring Options 1.GCF Factoring (take-out a common term) 2.Sum or Difference of Cubes 3.Factor by Grouping 4.U Substitution 5.Polynomial.
Holt Algebra Dividing Polynomials 6-3 Dividing Polynomials Holt Algebra 2 Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson.
Dividing Polynomials 6-3 Warm Up Lesson Presentation Lesson Quiz
Dividing Polynomials 3-3 Warm Up Lesson Presentation Lesson Quiz
Lesson 6-3: Dividing Polynomials
Warm-ups Week 8 10/8/12 Find the zeros of f(x) = x3 + 2x2 – 13x + 10 algebraically (without a graphing calculator). What if I told.
6.3 Dividing polynomials.
Factoring Polynomials
Factoring Polynomials
Warm Up Factor each expression. 1. 3x – 6y 2. a2 – b2
Objectives Factor the sum and difference of two cubes.
Factoring Polynomials
Finding Real Roots of Polynomial Equations 6-5
5-3 Solving Quadratic Equations by Graphing and Factoring Warm Up
Warm Up Factor each expression. 1. 3x – 6y 3(x – 2y) 2. a2 – b2
Factoring Polynomials
Finding Real Roots of Polynomial Equations 6-5
1a. Divide using long division. (9x3 – 48x2 + 13x + 3) ÷ (x – 5)
Warm Up Factor each expression. 1. 3x – 6y 3(x – 2y) 2. a2 – b2
Dividing Polynomials Warm Up Lesson Presentation Lesson Quiz
Do Now Graph the following using a calculator: A) B)
Factoring Polynomials
Warm Up Factor each expression. 1. 3x – 6y 3(x – 2y) 2. a2 – b2
Warm Up 1. Divide f(a) = 4a2 – 3a + 6 by a – 2 using any method.
Dividing Polynomials 3-3 Warm Up Lesson Presentation Lesson Quiz
Factoring Polynomials
Essential Questions How do we use the Factor Theorem to determine factors of a polynomial? How do we factor the sum and difference of two cubes.
LEARNING GOALS – LESSON 6.4
Factoring Special Products
Finding Real Roots of Polynomial Equations 3-5
Factoring Polynomials
Objectives Use the Factor Theorem to determine factors of a polynomial. Factor the sum and difference of two cubes.
Finding Real Roots of Polynomial Equations 3-5
Dividing Polynomials 3-3 Warm Up Lesson Presentation Lesson Quiz
Dividing Polynomials 6-3 Warm Up Lesson Presentation Lesson Quiz
Finding Real Roots of Polynomial Equations 3-5
Factoring Polynomials
Objectives Use the Factor Theorem to determine factors of a polynomial. Factor the sum and difference of two cubes.
You can use synthetic division to evaluate polynomials
Finding Real Roots of Polynomial Equations
Factoring Special Products
Factoring Polynomials
Finding Real Roots of Polynomial Equations 6-5
Warm Up 1. Divide by using synthetic division. (8x3 + 6x2 + 7) ÷ (x + 2) 8x2 – 10x + 20 – 33 x Divide by using synthetic division. (x3 –
 .
Recall that if a number is divided by any of its factors, the remainder is 0. Likewise, if a polynomial is divided by any of its factors, the remainder.
Factoring Polynomials
 .
Presentation transcript:

Factoring Polynomials 3-4 Factoring Polynomials Warm Up Lesson Presentation Lesson Quiz Holt McDougal Algebra 2 Holt Algebra 2

Warm Up Factor each expression. 1. 3x – 6y 3(x – 2y) 2. a2 – b2 (a + b)(a – b) Find each product. 3. (x – 1)(x + 3) x2 + 2x – 3 4. (a + 1)(a2 + 1) a3 + a2 + a + 1

Objectives Use the Factor Theorem to determine factors of a polynomial. Factor the sum and difference of two cubes.

Recall that if a number is divided by any of its factors, the remainder is 0. Likewise, if a polynomial is divided by any of its factors, the remainder is 0. The Remainder Theorem states that if a polynomial is divided by (x – a), the remainder is the value of the function at a. So, if (x – a) is a factor of P(x), then P(a) = 0.

Example 1: Determining Whether a Linear Binomial is a Factor Determine whether the given binomial is a factor of the polynomial P(x). A. (x + 1); (x2 – 3x + 1) B. (x + 2); (3x4 + 6x3 – 5x – 10) Find P(–1) by synthetic substitution. Find P(–2) by synthetic substitution. –1 1 –3 1 –1 4 –2 3 6 0 –5 –10 1 –4 5 –6 10 3 –5 P(–1) = 5 P(–1) ≠ 0, so (x + 1) is not a factor of P(x) = x2 – 3x + 1. P(–2) = 0, so (x + 2) is a factor of P(x) = 3x4 + 6x3 – 5x – 10.

Example 2: Factoring by Grouping Factor: x3 – x2 – 25x + 25. (x3 – x2) + (–25x + 25) Group terms. Factor common monomials from each group. x2(x – 1) – 25(x – 1) Factor out the common binomial (x – 1). (x – 1)(x2 – 25) Factor the difference of squares. (x – 1)(x – 5)(x + 5)

Example 2 Continued Check Use the table feature of your calculator to compare the original expression and the factored form. The table shows that the original function and the factored form have the same function values. 

Just as there is a special rule for factoring the difference of two squares, there are special rules for factoring the sum or difference of two cubes.

Example 3A: Factoring the Sum or Difference of Two Cubes Factor the expression. 4x4 + 108x 4x(x3 + 27) Factor out the GCF, 4x. 4x(x3 + 33) Rewrite as the sum of cubes. Use the rule a3 + b3 = (a + b)  (a2 – ab + b2). 4x(x + 3)(x2 – x  3 + 32) 4x(x + 3)(x2 – 3x + 9)

Example 3B: Factoring the Sum or Difference of Two Cubes Factor the expression. 125d3 – 8 Rewrite as the difference of cubes. (5d)3 – 23 (5d – 2)[(5d)2 + 5d  2 + 22] Use the rule a3 – b3 = (a – b)  (a2 + ab + b2). (5d – 2)(25d2 + 10d + 4)

Example 4: Geometry Application The volume of a plastic storage box is modeled by the function V(x) = x3 + 6x2 + 3x – 10. Identify the values of x for which V(x) = 0, then use the graph to factor V(x). V(x) has three real zeros at x = –5, x = –2, and x = 1. If the model is accurate, the box will have no volume if x = –5, x = –2, or x = 1.

Example 4 Continued One corresponding factor is (x – 1). 1 1 6 3 –10 Use synthetic division to factor the polynomial. 1 7 10 1 7 10 V(x)= (x – 1)(x2 + 7x + 10) Write V(x) as a product. V(x)= (x – 1)(x + 2)(x + 5) Factor the quadratic.

Lesson Quiz 1. x – 1; P(x) = 3x2 – 2x + 5 P(1) ≠ 0, so x – 1 is not a factor of P(x). 2. x + 2; P(x) = x3 + 2x2 – x – 2 P(2) = 0, so x + 2 is a factor of P(x). 3. x3 + 3x2 – 9x – 27 (x + 3)(x + 3)(x – 3) 4. x3 + 3x2 – 28x – 60 (x + 6)(x – 5)(x + 2) 4. 64p3 – 8q3 8(2p – q)(4p2 + 2pq + q2)