Section 20.3 – DNA and Biotechnology. DNA and Biotechnology  Carpenters require tools such as hammers, screwdrivers, and saws, and surgeons require scalpels,

Slides:



Advertisements
Similar presentations
Production of Human Growth Hormone in Genetically Modified Bacteria
Advertisements

Restriction Enzymes.
Restriction Enzymes Aims: Must be able to recall the basic functions of restriction enzymes. Should be able to outline how specific restriction enzymes.
Restriction Endonucleases By Stephanie, Jennice, Jessica.
6.1 Biotechnological Tools and Techniques Recombinant DNA & Gel electrophoresis.
V) BIOTECHNOLOGY.
 Intent of altering human genome  Introducing new genetic material into genome  Insulin.
Bacterial Transformation
Genetically Engineered Bacteria  It’s basically how scientists and researchers manipulate genes from one species into the genome of a bacterium  Recall,
 Restriction Enzymes are part of the essential tools of genetic engineering. They have the ability to cut DNA molecules at very precise sequences of.
RECOMBINANT DNA TECHNIQUE
“Amazing Schemes Within Your Genes”
Genetics and Genetic Engineering terms clones b organisms or cells of nearly identical genetic makeup derived from a single source.
Genetic Engineering DNA technology. Palindromes  mom  wow  race car  straw warts  never odd or even  stella won no wallets  was it a car or a cat.
Introduction to Biotech Notes MANIPULATING and ANALYZING DNA.
Biotechnology The use of biological processes, organisms, or systems to manufacture products intended to improve the quality of human life.
Restriction enzymes (endonucleases)
Biotechnology.
Recombinant DNA Technology Bacterial Transformation & GFP.
Biotechnology Biotechnology is the use of biological processes, organisms, or systems to manufacture products intended to improve the quality of human.
Recombinant DNA and Biotechnology Gene cloning in bacterial plasmids Plasmid – extrachromosomal piece of DNA not necessary for survival can be transferred.
Biotechnology is the use of biological processes, organisms, or systems to manufacture products intended to improve the quality of human life.
Restriction Enzymes Enzymes that CUT
Ms. Gaynor Honors Genetics Biotechnology and the Use of Bacteria.
Chapter 20 Notes: DNA Technology. Understanding & Manipulating Genomes 1995: sequencing of the first complete genome (bacteria) 2003: sequencing of the.
Restriction Enzymes. Restriction Endonucleases Also called restriction enzymes “molecular scissors” discovered in in bacteria Restriction enzymes is an.
Molecular Genetics Lab Review. Bacterial Transformation Genetic transformation—host organism takes in and expresses foreign DNA Genetic engineering—manipulation.
BIOTECHNOLOGY -intentional manipulation of genetic material of an organism.
Review from last week. The Making of a Plasmid Plasmid: - a small circular piece of extra-chromosomal bacterial DNA, able to replicate - bacteria exchange.
Part One BIOTECHNOLOGICAL TOOLS & TECHNIQUES. What is biotechnology? Applied biology genetics; molecular biology; microbiology; biochemistry Uses living.
Chapter 6: BIOTECHNOLOGY 4.4 Biotechnological Tools and Techniques.
© SSER Ltd.. Gene Technology or Recombinant DNA Technology is about the manipulation of genes Recombinant DNA Technology involves the isolation of DNA.
Recombinant DNA and Genetic Engineering
Gene transfer.
Chapter 9: Genetic Engineering
Introduction to Biotechnology ~manipulating and analyzing DNA.
Biotechnology biotechnology – manipulation of biological organisms (usually with DNA itself) To study the functions of individual genes, molecular biologists.
Do you agree or disagree with these statements: 1.I have eaten food that contains genetically modified (GM) crops. 2.GM foods should be available, as long.
6.1 - Biotechnological Tools & Techniques
GENETIC RECOMBINATION By Dr. Nessrin Ghazi AL-Abdallat Lecturer of Microbiology.
Deoxyribose Nucleic Acid (DNA)
Genetic Engineering Genetic engineering is also referred to as recombinant DNA technology – new combinations of genetic material are produced by artificially.
Biotechnology The use of biological processes, organisms, or systems to manufacture products intended to improve the quality of human life.
BIOTECHNOLOGY DNA is now being easily manipulated. Molecular biologists analyze and alter genes and their respective proteins. Recombinant DNA is DNA from.
 Also called restriction endonucleases  Proteins produced by bacteria as a defense against “foreign” DNA  Serve as bacteria’s “immune system”
Biotechnological Tools and Techniques. 1. Restriction Endonuclease (enzymes) Molecular scissors. Recognizes specific sequence (recognition site) on DNA.
Chapter 20: Part 1 DNA Cloning and Plasmids
Cloning DNA, Plasmids and Transformations By: Stephen Sullivan and Julie Ethier.
SBI 4U December 2012 Manipulating & Cloning DNA. Introduction Insulin, diabetes and genetic engineering Genetic engineering: the intentional production.
nome/program.html.
Steps to Recombinant DNA 1) Isolate the foreign DNA fragment 2) Attach DNA fragment to a “vehicle” called a Vector 3) Transfer the vector into a host.
Biotechnology & DNA Technology Genetic Engineering Chapter Pgs Objective: I can describe several different types of biotechnology,
KEY CONCEPT DNA sequences of organisms can be changed.
Chapter 12 DNA Technology and Genomics (aka GENETIC ENGINEERING) ALIGNED WITH “Ch. 12 DNA Technology and Genomics Questions” Worksheet.
4/26/2010 BIOTECHNOLOGY.
BIOTECHNOLOGY DNA Technology.
20.3 DNA & Biotechnology Biology 30.
Transformation Objective 4.
GENETIC TECHNOLOGY Genetically engineered bollworm.
Bacterial Transformation
Introduction to Biotechnology
Dr. Peter John M.Phil, PhD Assistant Professor Atta-ur-Rahman School of Applied Biosciences (ASAB) National University of Sciences & Technology (NUST)
BIOTECHNOLOGICAL TOOLS & TECHNIQUES
Jared Lieser Cell Physiology Fall 2003
Gene Isolation and Manipulation
Biotechnology: Part 1 DNA Cloning, Restriction Enzymes and Plasmids
4/26/2010 BIOTECHNOLOGY.
TOOLS OF BIOTECHNOLOGY
Restriction Enzymes.
Biotechnological Tools and Techniques
Presentation transcript:

Section 20.3 – DNA and Biotechnology

DNA and Biotechnology  Carpenters require tools such as hammers, screwdrivers, and saws, and surgeons require scalpels, forceps, and stitching needles.  The tools of the molecular biologist are living biological organisms or biological molecules, such as bacteria or enzymes.  Using these tools, scientists can take specific DNA sequences and move them from one DNA molecule to another, forming recombinant DNA.  Recombinant DNA – a fragment of DNA composed of sequences originating from at least two different sources.

 Research in exploring and using this type of biotechnology has led to exciting new advances in biological, agricultural, and medical technology.  Biotechnology research has also found ways to introduce specific DNA sequences into a living cell. For example, the gene that encodes insulin has been introduced into bacterial cells so that they become living factories producing this vital hormone for Diabetics.  The introduction and expression of foreign DNA into a new an organism is called genetic transformation.  In this section, we will explore some of the key tools used by molecular geneticists in producing recombinant DNA and genetically transformed organisms.

The Human Genome Project  Before scientists could transform or transfer human DNA into another organism for medical advancements, they first needed to determine the entire DNA sequence within a human body.  They had to determine what each sequence of DNA base pairs was responsible for.  This endeavour became known as the HUMAN GENOME PROJECT.

 The ultimate goal of the project was to specifically map out each gene in the human body.  There are approximately genes, amongst the 23 chromosomes and an estimated 3 billion base pairs.  The project began in 1990 and the human genome was completely mapped by June of 2000.

Milestones In Gene Mapping

Enzymes and Recombinant DNA  Once scientists have located a particular segment of DNA they wish to remove, enzymes can be used to isolate it or modify it.  The DNA fragment can then be used to create recombinant DNA or be transferred to another organism.

The Enzymes Involved  There are 3 major enzymes involved in the making of recombinant DNA: 1. Restriction Endonucleases  AKA Restriction Enzymes 2. Methylases 3. DNA Ligase

Restriction Endonucleases  Restriction Endonuclease – an enzyme that cuts double-stranded DNA into fragments at a specific sequence; like molecular scissors.  Each type of restriction enzyme recognizes a particular sequence of nucleotides that is known as a recognition site.  Most recognition sites are four to eight base pairs long and are palindromes.

 Palindromes – are sequences of DNA that read the same backwards as forwards when reading in the 5’ to 3’ direction.  EX. GAATTC CTTAAG

 When restriction enzymes make a cut, they can leave two possible ends:  Sticky Ends  Blunt Ends  Sticky Ends - fragment ends of a DNA molecule with overhangs of base pairs, or bases are left unpaired.  Blunt Ends - fragment ends of a DNA molecule that are fully base paired.

Sticky Ends – Not all bases are paired after the cut. Blunt Ends – All bases are paired after the cut.

Example Question #1  The following sequence of DNA was digested with the restriction endonuclease Smal:  Smal recognizes the sequence CCCGGG and cuts between the C and G.  Identify the location of the cuts on it.  How many fragments will be produced?  What type of ends does Smal produce?

Example Question #2  Hind III recognizes the sequence AAGCTT and cleaves between the two A’s. What type of end is produced by cleavage with Hind III?

Example Question #3  Write out the complementary strand for the DNA sequence below. Clearly identify the palindromic sequences within it by circling them.

Methylases  Methylase - an enzyme that adds a methyl group to one of the nucleotides found in a restriction endonuclease recognition site.  Methyl group = CH 3  Methylases are important tools in recombinant DNA technology because they protect a gene fragment from being cut by the restriction endonuclease.

 Methylases are important to molecular biologists because they may want to make cuts at certain places in a DNA sequence and not others.  They can use methylases to prevent cutting the DNA in unwanted locations. A methyl (CH3) group is added to change the sequence slightly, so it is no longer recognized by the restriction endonuclease and is therefore not cut.

DNA Ligase  To create recombinant DNA, pieces of DNA from two sources must be joined together.  Using restriction enzymes and methylases, molecular geneticists can engineer fragments of DNA that contain the specific nucleotide sequences they want.  These segments of DNA are then joined together by DNA ligase.

 If two fragments have been generated using the same restriction enzyme, they will be attracted to each other at their complementary sticky ends.  Hydrogen bonds will form between the complementary base pairs.  DNA ligase then joins the strands of DNA together.

(a)and (b) Show two ends formed by the EcoRI endonuclease, fitting together perfectly. (c) Shows how when one fragment is cut using the enzyme EcoRI and the other fragment is cut using the enzyme HindIII, the ends will not match up.

Transformation  Once the new sequences of DNA are created using restriction endonucleases, methylases and DNA ligase, the new DNA must be transformed (transferred) into the same organism or a different one.  In transformation, vectors are used as a delivery system to move the foreign DNA into a cell of the organism.

 Once the new DNA has been introduced by the vector, the organism is now said to be transgenic.  Transgenic - a cell or an organism that is transformed by DNA from another species.

Transformation of Bacteria  Bacteria are the most common organisms that are transformed by molecular biologists.  Transgenic bacteria may be used to study gene expression or gene function or to synthesize a useful gene product.  For example, some transgenic bacteria have been engineered to produce human growth hormone, used in the treatment of pituitary dwarfism.

 The first stage of transformation for any organism is to identify and isolate the DNA fragment that is to be transferred.  The DNA fragment is then introduced into the vector.  Plasmids are commonly used as vectors for bacterial transformation.  Plasmids are small, circular, double-stranded DNA molecules that occur naturally in the cytoplasm of many bacteria.

 Once the plasmid contains the recombinant DNA, the plasmid is introduced into the same or new bacterial cell.