Exercise Simplify 5x + 3y – x + 10y. 4x + 13y
Simplify 74 – 5m – 2m – 8. – 7m + 66 Exercise
Simplify 14w + 23 – 16n. already in simplified form Exercise
Simplify 17t – 6q + t + 8r. – 6q + 8r + 18t Exercise
Which property is used to add like terms? Distributive Property Exercise
2x + 5x 2 √ √ 7
√ a √ b = √ ab √ a + √ b ≠ √ a + b but
Simplify 6 √ √ 2 – 2 √ 7. 6 √ √ 2 – 2 √ 7 = 6 √ 7 – 2 √ √ 2 = (6 – 2) √ √ 2 = 4 √ √ 2 Example 1
Simplify 4 √ 2 – 3 √ √ 7. No simplification is possible. Unlike terms cannot be simplified further. Example 2
Simplify 3 √ √ 5. 5 √ 55 √ 55 √ 55 √ 5 Example
Simplify 5 √ √ √ 11 Example
Simplify 2 √ √ 2 – 5 √ 2. 2 √ 3 – 2 √ 2 Example
Simplify 8√5 + 2√6 – √5 + 3√6. 7 √ √ 6 Example
Simplify 3 √ √ 5 – 3 √ 3. 3 √ √ 5 – 3 √ 3 Example
Simplify 5 √ √ 12 – √ √ 3 Example
2 √ √ 3
Simplify √ 27 + √ 12. √ 27 + √ 12 = √ 3 × 3 × 3 + √ 2 × 2 × 3 = (3 + 2) √ 3 = 5 √ 3 = 3 √ √ 3 Example 3
Simplify 3√ 8 – 2 √ 18 – √ √ 50. = 3 √ 2 × 2 × √ 2 × 3 × 3 – √ 2 × 2 × √ 2 × 5 × 5 = 6 √ 2 – 6 √ 2 – 2 √ √ 2 = (6 – ) √ 2 – 2 √ 3 = 20 √ 2 – 2 √ 3 Example 4
Simplify 3 √ √ √ 3 Example
Simplify 5 √ √ 8 – √ √ 27 √ 27 √ 27 √ 2 Example
Simplify 3 √ 2 (√ 18 + √ 50 ). 48 Example
Simplify. 5 √ √ 27 √ 3√ 3√ 3√ 3 19 Example
Simplify 3 √ 2 (2 √ √ 2 ). 6 √ Exercise
Simplify √ 6 (3 √ 7 – 5 √ 3 ). 3 √ 42 – 15 √ 2 Exercise
Simplify √ 24 ( √ 30 + √ 6 ). 12 √ Exercise
Simplify 4√ 12 (3√ √ 18 ). 216 √ 6 Exercise
Simplify. 7 √ 15 – 2 √ 15 √ Exercise
Simplify. 10 √ 26 – 5 √ 39 5 √ 13 2 √ 2 – √ 3 Exercise