Rutherford Appleton Laboratory Particle Physics Department A Novel CMOS Monolithic Active Pixel Sensor with Analog Signal Processing and 100% Fill factor.

Slides:



Advertisements
Similar presentations
Monolithic Active Pixel Sensor for aTera-Pixel ECAL at the ILC J.P. Crooks Y. Mikami, O. Miller, V. Rajovic, N.K. Watson, J.A. Wilson University of Birmingham.
Advertisements

TPAC: A 0.18 Micron MAPS for Digital Electromagnetic Calorimetry at the ILC J.A. Ballin b, R.E. Coath c *, J.P. Crooks c, P.D. Dauncey b, A.-M. Magnan.
A MAPS-based readout of an electromagnetic calorimeter for the ILC Nigel Watson (Birmingham Univ.) Motivation Physics simulations Sensor simulations Testing.
J.A. Ballin, P.D. Dauncey, A.-M. Magnan, M. Noy
Rutherford Appleton Laboratory Particle Physics Department G. Villani CALICE MAPS Prague TWEPP TWEPP-07 Topical Workshop on Electronics for Particle.
SPIDER Silicon Pixel Detector R&D  Birmingham University (N. Watson, J. Wilson, R. Staley), Bristol University (J. Goldstein, D. Cussans, R. Head, S.
Jaap Velthuis, University of Bristol SPiDeR SPiDeR (Silicon Pixel Detector Research) at EUDET Telescope Sensor overview with lab results –TPAC –FORTIS.
1 CALICE simulation results G.Villani 06 Cell size: 50 x 50  m 2 21 hits simulated, 5  m pitch 121 extrapolated hits / pixel 961 extrapolated hits /
Anne-Marie Magnan Imperial College London A MAPS-based digital Electromagnetic Calorimeter for the ILC on behalf of the MAPS group: Y. Mikami, N.K. Watson,
G.Villani jan. 071 CALICE pixel Deep P-Well results Nwell 16 μm x 16 μm P-well 17 μm x 17 μm Collecting diodes 3.6 μm x 3.6 μm Bias: NWell 3.5V Diodes:
1 Konstantin Stefanov, CCLRC Rutherford Appleton Laboratory 1 ECFA 2006, Valencia 1 MAPS-based ECAL Option for ILC ECFA 2006, Valencia, Spain Konstantin.
Thursday, May 10th, 2007 Calice Collaboration meeting --- A.-M. Magnan --- IC London 1 Progress Report on the MAPS ECAL R&D on behalf of the MAPS group:
Tera-Pixel APS for CALICE Progress 20 th October 2006 [JC+RT]
1 The MAPS ECAL ECFA-2008; Warsaw, 11 th June 2008 John Wilson (University of Birmingham) On behalf of the CALICE MAPS group: J.P.Crooks, M.M.Stanitzki,
MAPS ECAL Nigel Watson Birmingham University  Overview  Testing  Summary For the CALICE MAPS group J.P.Crooks, M.M.Stanitzki, K.D.Stefanov, R.Turchetta,
Tera-Pixel APS for CALICE Progress 19 th January 2007.
Tera-Pixel APS for CALICE Progress 13 th November 2006.
G.Villani jan. 071 CALICE pixel Deep P-Well results Nwell ≈ 900 μm 2 P-well 1μm ring gap Collecting diodes 3.6 x 3.6 μm 2 Bias: NWell 3.5V Diodes: 1.5V.
1 CALICE simulation results G.Villani oct. 06 Progress on CALICE MAPS detector simulations: Results for 1.8 x 1.8 µm 2 Discussions & conclusions Next step.
G.Villani jan. 071 CALICE pixel Deep P-Well results Nwell ≈ 900 μm 2 P-well 1μm ring gap Collecting diodes 3.6 x 3.6 μm 2 Bias: NWell 3.5V Diodes: 1.5V.
1 Instrumentation DepartmentMicroelectronics Design GroupR. Turchetta 3 April 2003 International ECFA/DESY Workshop Amsterdam, 1-4 April 2003 CMOS Monolithic.
SPiDeR  First beam test results of the FORTIS sensor FORTIS 4T MAPS Deep PWell Testbeam results CHERWELL Summary J.J. Velthuis.
Dr Renato Turchetta CMOS Sensor Design Group CCLRC Technology Large Area Monolithic Active Pixel Sensors.
Development of Advanced MAPS for Scientific Applications
First Results from Cherwell, a CMOS sensor for Particle Physics By James Mylroie-Smith
1 Nick Sinev LCWS08, University of Illinois at Chicago November 18, 2008 Status of the Chronopixel project J. E. Brau, N. B. Sinev, D. M. Strom University.
Monolithic Pixels R&D at LBNL Devis Contarato Lawrence Berkeley National Laboratory International Linear Collider Workshop, LCWS 2007 DESY Hamburg, May.
SPiDeR  SPIDER DECAL SPIDER Digital calorimetry TPAC –Deep Pwell DECAL Future beam tests Wishlist J.J. Velthuis for the.
MAPS for a “Tera-Pixel” ECAL at the International Linear Collider J.P. Crooks Y. Mikami, O. Miller, V. Rajovic, N.K. Watson, J.A. Wilson University of.
Fully depleted MAPS: Pegasus and MIMOSA 33 Maciej Kachel, Wojciech Duliński PICSEL group, IPHC Strasbourg 1 For low energy X-ray applications.
Development of an ASIC for reading out CCDS at the vertex detector of the International Linear Collider Presenter: Peter Murray ASIC Design Group Science.
ALICE Inner Tracking System at present 2 2 layers of hybrid pixels (SPD) 2 layers of silicon drift detector (SDD) 2 layers of silicon strips (SSD) MAPs.
Specifications & motivation 2  Lowering integration time would significantly reduce background  Lowering power would significantly reduce material budget.
LEPSI ir e s MIMOSA 13 Minimum Ionising particle Metal Oxyde Semi-conductor Active pixel sensor GSI Meeting, Darmstadt Sébastien HEINI 10/03/2005.
Lepton Collider Increased interest in high energy e + e - collider (Japan, CERN, China) STFC funded us for £75k/year travel money in 2015 and 2016 to re-
Tera-Pixel APS for CALICE Jamie Crooks, Microelectronics/RAL SRAM Column Concept.
First tests of CHERWELL, a Monolithic Active Pixel Sensor. A CMOS Image Sensor (CIS) using 180 nm technology James Mylroie-Smith Queen Mary, University.
18 Sep 2008Paul Dauncey1 The UK MAPS/DECAL Project Paul Dauncey for the CALICE-UK MAPS group.
J. Crooks STFC Rutherford Appleton Laboratory
UK Activities on pixels. Adrian Bevan 1, Jamie Crooks 2, Andrew Lintern 2, Andy Nichols 2, Marcel Stanitzki 2, Renato Turchetta 2, Fergus Wilson 2. 1 Queen.
Advanced Pixel Architectures for Scientific Image Sensors Rebecca Coath, Jamie Crooks, Adam Godbeer, Matthew Wilson, Renato Turchetta CMOS Sensor Design.
Thanushan Kugathasan, CERN Plans on ALPIDE development 02/12/2014, CERN.
26 Apr 2009Paul Dauncey1 Digital ECAL: Lecture 2 Paul Dauncey Imperial College London.
L.Royer– Calice LLR – Feb Laurent Royer, J. Bonnard, S. Manen, P. Gay LPC Clermont-Ferrand R&D pole MicRhAu dedicated to High.
Rutherford Appleton Laboratory Particle Physics Department G. Villani CALICE MAPS Prague September TWEPP-07 Topical Workshop on Electronics for.
26 Apr 2009Paul Dauncey1 Digital ECAL: Lecture 3 Paul Dauncey, Imperial College London.
CMOS MAPS with pixel level sparsification and time stamping capabilities for applications at the ILC Gianluca Traversi 1,2
Rutherford Appleton Laboratory Particle Physics Department G. Villani CALICE MAPS Siena October th Topical Seminar on Innovative Particle and.
A MAPS-based readout for a Tera-Pixel electromagnetic calorimeter at the ILC Marcel Stanitzki STFC-Rutherford Appleton Laboratory Y. Mikami, O. Miller,
Custom mechanical sensor support (left and below) allows up to six sensors to be stacked at precise positions relative to each other in beam The e+e- international.
CMOS Sensors WP1-3 PPRP meeting 29 Oct 2008, Armagh.
-1-CERN (11/24/2010)P. Valerio Noise performances of MAPS and Hybrid Detector technology Pierpaolo Valerio.
Eleuterio SpiritiILC Vertex Workshop, April On pixel sparsification architecture in 130nm STM technology ILC Vertex Workshop April 2008 Villa.
M. TWEPP071 MAPS read-out electronics for Vertex Detectors (ILC) A low power and low signal 4 bit 50 MS/s double sampling pipelined ADC M.
MAPS ECAL Nigel Watson Birmingham University  Technical Status  Future Plans  Summary For the CALICE MAPS group J.P.Crooks, M.M.Stanitzki, K.D.Stefanov,
Monolithic and Vertically Integrated Pixel Detectors, CERN, 25 th November 2008 CMOS Monolithic Active Pixel Sensors R. Turchetta CMOS Sensor Design Group.
Hybrid CMOS strip detectors J. Dopke for the ATLAS strip CMOS group UK community meeting on CMOS sensors for particle tracking , Cosenors House,
Presented by Renato Turchetta CCLRC - RAL 7 th International Conference on Position Sensitive Detectors – PSD7 Liverpool (UK), September 2005 R&D.
Advanced Monolithic Active Pixel Sensors with full CMOS capability for tracking, vertexing and calorimetry Marcel Stanitzki STFC-Rutherford Appleton Laboratory.
SPiDeR  Status of SPIDER Status/Funding Sensor overview with first results –TPAC –FORTIS –CHERWELL Beam test 09 Future.
Marcel Stanitzki 1 The MAPS ECAL Status and prospects Fermilab 10/Apr/2007 Y. Mikami, O. Miller, V. Rajovic, N.K. Watson, J.A. Wilson University of Birmingham.
Ivan Peric, Christian Kreidl, Peter Fischer University of Heidelberg
for the SPiDeR collaboration (slides from M. Stanitski, Pixel2010)
A MAPS-based readout of an electromagnetic calorimeter for the ILC
Design and Characterization of a Novel, Radiation-Resistant Active Pixel Sensor in a Standard 0.25 m CMOS Technology P.P. Allport, G. Casse, A. Evans,
HV-MAPS Designs and Results I
Mimoroma2 MAPS chip: all NMOS on pixel sparsification architecture
CALICE simulation results G.Villani 06
R&D of CMOS pixel Shandong University
Stefano Zucca, Lodovico Ratti
Presentation transcript:

Rutherford Appleton Laboratory Particle Physics Department A Novel CMOS Monolithic Active Pixel Sensor with Analog Signal Processing and 100% Fill factor J.P. Crooks 3, J.A. Ballin 1, P.D. Dauncey 1,A-M. Magnan 1, Y. Mikami 2, O. Miller 2,M. Noy 1, V. Rajovic 2, M. Stanitzki 3, K.D. Stefanov 3, R. Turchetta 3, M. Tyndel 3, E.GiulioVillani 3, N. K. Watson 2, J. A. Wilson 2 1 :Imperial College London, 2 :University of Birmingham, 3 : STFC Rutherford Appleton Laboratory   Pixels small enough: at most one particle/pixel   1-bit ADC/pixel: Digital ECAL   Example: ECAL – Terapixel APS for ILC SORMA West 2008 Berkeley, California USA   INMAPS process: Deep P-Well implant to shield N-Well housing readout electronic   Potential barrier between P ++ -Well and Epitaxial reflects back generated charge into the active layer   Dramatic improvement in charge collection New INMAPS process Pixel simulation standard process Detector Microphotograph and laser setup used for testing (right). Laser test results on INMAPS and NO INMPAS test pixel (left). Laser test results   Laser IR (1064nm, 2μm minimum shutter size, 4ns pulse)   Laser scans clearly indicate that the INMAPS process increases charge collection efficiency   Further investigations ongoing Source test results   Test with radioactive sources validate the usefulness of INMAPS process   Further tests ongoing to understand unexpected threshold spread   New sensor submission planned summer 08 Source test results: 55 Fe (right) and β source (left) on INMAPS test pixel INMAPS test results   Two different readout implemented at pixel level: Pre-shape and Pre-sample (160 and 189 transistors respectively)   Two different capacitor arrangements   DC power consumption approximately 10μW   0.18μm CMOS process ≈ 144mV ≈ 202mV ≈ 9.5μm   Study of optimal diodes location and size carried out on the new process   12μm epitaxial layer thickness Rst Vrs t Shape r PreRst Buffe r s.f Cfb Cin Buffe r s.f Vth+ Vth- Reset Sampl e Cstore Pream p Shap er Rst Cpr e Cfb Rfb Rin Cin Vth+ Vth- Pre-Shape Pixel Analog Front End Low gain / High Gain Comparator Pre-Sample Pixel Analog Front End Low gain / High Gain Comparator Hit Logic 150 ns 450 ns Hit Logic Self Reset Trim&Mas k SRAM SR Trim&Mas k SRAM SR Hit Output Pixel Readout Topology Analog   Each digital block serves 42 pixels from one row, split into groups of 6 pixels   After a hit, for each row the logic stores timestamp, pattern number and pattern in SRAM   pixels, approximatel6 8x10 6 transistors   1x1cm 2 total surface   Dead area 250μm / 2mm Pixel Readout Topology Digital INMAPS simulation results   In a complex pixel design a standard MAPS solution leads to low charge collection efficiency   Approximately 50% of the generated charge is collected by the readout N-Wells MAPS digital calorimeter concept Pixel collectionCharge (e - ) 87 Q max 362 Q min 1 5 Q stdev 107 Pixel collection Charge (e - ) 401 Q max 656 Q min Q stdev 95 Pre-shape (left) and pre-sample (right) pixel layout 50  50 μm 2 MAPS pixels SiD 16mm 2 area cells Contacts: