Le tecnologie dellallarme precoce e la gestione dei rischi naturali La gestione del tempo nella prevenzione dei rischi naturali Venerdì 28 Novembre 2003 Institut français de Naples Le Grenoble Paolo Gasparini Dipartimento di Scienze Fisiche Università di Napoli Federico II CRdC – AMRA Le tecnologie dellallarme precoce e la gestione dei rischi naturali
Le tecnologie dellallarme precoce e la gestione dei rischi naturali actions lead time catastrophic event to mitigate its effects All the actions which can be carried out during the lead time of a catastrophic event in order to mitigate its effects. EARLY WARNING
Le tecnologie dellallarme precoce e la gestione dei rischi naturali The time elapsing from the moment when the occurrence of a catastrophic event is reasonably certain till the moment the event really occurs. LEAD TIME
Le tecnologie dellallarme precoce e la gestione dei rischi naturali Event Source Considered area Propagation Path
Le tecnologie dellallarme precoce e la gestione dei rischi naturali AUTOMATIC EARTHQUAKES: seconds to tens of seconds TSUNAMIS: minutes to hours METEROLOGICAL EVENTS: hours to days FLOODS AND LANDSLIDES: hours to days VOLCANIC ERUPTIONS: hours to weeks ALERT + INFORMATION COPING CAPACITY TYPICAL LEAD TIMES MOST SIGNIFICANT ACTIONS
Le tecnologie dellallarme precoce e la gestione dei rischi naturali CHRONOLOGY 1855: 1855: Palmieri seismograph 1868: 1868: The Concept of an early warning system was proposed by J.D. Cooper for San Francisco Milne seismograph Theory of Rayleigh surface waves Oldham and Wiechert identify P and S waves as elastic waves Reid elastic rebound theory for the 1906 San Francisco earthquake Theory and identification of Love surface waves Richter Magnnitude scale : Japan national railways installed an instrumental early warning system to protect the Tohoku Shinkansen line (threshold at PGA = 0.04 g at 5 Hz) : Implementation of the improved UrEDAS system (detection of P-waves) to protect the Tokado Shinkansen line and since 1992 in California (1994 Northridge earthquake) : Implementation of Seismic Alert System for Mexico City : CUBE and REDI seismic warning systems in Southern and Northern California : Implementation of the Taiwan Rapid Earthquake Information System SEISMIC EARLY WARNING
Le tecnologie dellallarme precoce e la gestione dei rischi naturali - TRINET Project in Southern California - Feasibility study for Istanbul - Feasibility study for Bucharest - Feasibility study for Armenia SYSTEMS IN PROGRESS
Le tecnologie dellallarme precoce e la gestione dei rischi naturali
Le tecnologie dellallarme precoce e la gestione dei rischi naturali Japan Shinkansen lines Japan Shinkansen lines = 0 to 10 s Mexico City Mexico City = s Taiwan Taiwan = tens of s Istanbul Istanbul = 0 to 70 s Bucharest Bucharest = 25 s TYPICAL LEAD TIMES
Le tecnologie dellallarme precoce e la gestione dei rischi naturali INDUSTRY Sensitive industries - Life lines Computer facilities - High tech industry PUBLIC WARNING Schools - Media Business centres - Hospital Emergency services Disaster Management Relief Organisations TRASPORTATION Bridges – metro Trains - Aeroplanes
Le tecnologie dellallarme precoce e la gestione dei rischi naturali Seismic network to detect the signals; - Data processing system to identify location and magnitude of the earthquake; - Warning information transmitter; - Warning information receiver and processor; - Automatic system. SEISMIC EARLY WARNING INSTRUMENTS
Le tecnologie dellallarme precoce e la gestione dei rischi naturali
Le tecnologie dellallarme precoce e la gestione dei rischi naturali Japan: installed along all rail tracks shut off power when horizontal acceleration exceeds a threshold Front detection: deployed along coast gives ~15 sec warning I. Alarm seismometers II. UrEDAS event parameters determined from the P-arrival Protecting Bullet Trains
Le tecnologie dellallarme precoce e la gestione dei rischi naturali Japan: Protecting Bullet Trains 1. Trigger on P-arrivals 2. Use predominant period in first 3 seconds to determine magnitude 3. Knowing the magnitude and amplitude, epicentral distance is estimated 4. Azimuth of P-arrival and epicentral distance gives event location At P-arrival + 3 sec have an estimate of event location and magnitude 5. S minus P time used to improve the epicentral distance estimate …switching to event parameter determination from the P-arrival II. UrEDAS
Le tecnologie dellallarme precoce e la gestione dei rischi naturali Seismic Alert System: Mexico City developed in 1989 in the wake of the 1985 Michoacan earthquake 12 stations along coast station data transmitted to central processing in Mexico City warning issued when two stations indicate an event greater than magnitude 5 ~300 km allows ~60 sec warning 300 km Front detection
Le tecnologie dellallarme precoce e la gestione dei rischi naturali
Le tecnologie dellallarme precoce e la gestione dei rischi naturali Guerrero earthquake magnitude 7.3 event successfully detected and an alert issued 72 sec warning no real damage in Mexico City September 14, 1995
Le tecnologie dellallarme precoce e la gestione dei rischi naturali Taiwan: Use classical network processing approach: P-arrival used for event detection and conformation S-arrival needed for magnitude determination Wu and Teng, 2002 use sub-nets to reduce wait time (circles on map) System processing time: seconds Earthquake early warning
Le tecnologie dellallarme precoce e la gestione dei rischi naturali Chi-Chi earthquake: Wu and Teng, in press Example of how the system would have worked for this event: Warning issued after 22 sec Useful for regions more than 75km from epicenter September 20, 1999 magnitude 7.6 2,456 casualties Triangles represent population distribution warning times
Le tecnologie dellallarme precoce e la gestione dei rischi naturali 135 available stations with: broadband and strong motion sensors capable of on-site processing parameter transit times < 1sec TriNet 1. Seismic infrastructure
Le tecnologie dellallarme precoce e la gestione dei rischi naturali ElarmS timeline Earthquake alarm system
Le tecnologie dellallarme precoce e la gestione dei rischi naturali ElarmS capabilities Summary: We are currently testing ElarmS, it will: provide 0 to 2 seconds warning of peak ground motion to people directly above the earthquake epicenter provide approx. 10 seconds warning to people 30 km from the epicenter The certainty of the predicted ground motion increases as the warning time decrease. users must decide their uncertainty tolerance and their sensitivity to warning time
Le tecnologie dellallarme precoce e la gestione dei rischi naturali ISTANBUL
Le tecnologie dellallarme precoce e la gestione dei rischi naturali Potential Sources for Earthquakes larger than M 5.5 in Italy Integrated Seismogenic Source dataset and Tectonic Lineaments
Le tecnologie dellallarme precoce e la gestione dei rischi naturali Accelerometers and high frequency seism Accelerometers and broad band seism CRdC-AMRA MULTICOMPONENT SEISMIC NETWORK
Le tecnologie dellallarme precoce e la gestione dei rischi naturali Lions Gate Bridge
Le tecnologie dellallarme precoce e la gestione dei rischi naturali Rete Nazionale dei Gasdotti
Le tecnologie dellallarme precoce e la gestione dei rischi naturali Ignalina nuclear power plant (Lithuania)