Hypothesis Tests Hypothesis Tests One Sample Proportion.

Slides:



Advertisements
Similar presentations
Copyright © 2010 Pearson Education, Inc. Slide
Advertisements

Statistics Hypothesis Testing.
Our goal is to assess the evidence provided by the data in favor of some claim about the population. Section 6.2Tests of Significance.
Testing Hypotheses About Proportions
Inference on Proportions. What are the steps for performing a confidence interval? 1.Assumptions 2.Calculations 3.Conclusion.
Chapter 20: Testing Hypotheses About Proportions
Hypotheses tests for proportions
Inference Sampling distributions Hypothesis testing.
Our goal is to assess the evidence provided by the data in favor of some claim about the population. Section 6.2Tests of Significance.
Hypothesis Tests Hypothesis Tests One Sample Means.
Testing Hypotheses About Proportions Chapter 20. Hypotheses Hypotheses are working models that we adopt temporarily. Our starting hypothesis is called.
Hypothesis Tests Hypothesis Tests One Sample Means.
AP Statistics: Chapter 20
Significance Tests for Proportions Presentation 9.2.
Copyright © 2005 Brooks/Cole, a division of Thomson Learning, Inc Chapter 11 Introduction to Hypothesis Testing.
Objective: To test claims about inferences for proportions, under specific conditions.
Copyright © 2005 Brooks/Cole, a division of Thomson Learning, Inc Chapter 9 Introduction to Hypothesis Testing.
Chapter 20: Testing Hypotheses about Proportions
Fundamentals of Hypothesis Testing: One-Sample Tests
Testing Hypotheses About Proportions
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Chapter 20 Testing Hypotheses About Proportions.
Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide
Confidence Intervals and Hypothesis tests with Proportions.
Chapter 4 Introduction to Hypothesis Testing Introduction to Hypothesis Testing.
Hypothesis Tests with Proportions Chapter 10 Notes: Page 169.
Chapter 8 Introduction to Hypothesis Testing
Hypothesis Tests with Proportions Chapter 10. Write down the first number that you think of for the following... Pick a two-digit number between 10 and.
Inference on Proportions
Inference for Proportions One Sample. Confidence Intervals One Sample Proportions.
Warm-up 8.2 Testing a proportion Data Analysis 9 If ten executives have salaries of $80,000, six salaries of $75,000, and three have salaries of $70,000,
Hypothesis Tests OR Tests of Significance One Sample Means.
Hypothesis Tests for Notes: Page 194 Hypothesis Tests for One Sample Means Notes: Page 194.
Chapter 20 Testing hypotheses about proportions
Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Chapter 20 Testing Hypotheses About Proportions.
Hypothesis Tests Hypothesis Tests One Sample Means.
Testing Hypothesis About Proportions
Chapter 20 Testing Hypothesis about proportions
Hypothesis Tests One Sample Means
Chap 8-1 Fundamentals of Hypothesis Testing: One-Sample Tests.
Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide
Copyright © 2010 Pearson Education, Inc. Chapter 20 Testing Hypotheses About Proportions.
Inference on Proportions. Assumptions: SRS Normal distribution np > 10 & n(1-p) > 10 Population is at least 10n.
Hypothesis Tests Hypothesis Tests One Sample Means.
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide
Slide 20-1 Copyright © 2004 Pearson Education, Inc.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Chapter 20 Testing Hypotheses About Proportions.
Chapter 20 Testing Hypotheses About Proportions. confidence intervals and hypothesis tests go hand in hand:  A confidence interval shows us the range.
Hypothesis Tests Hypothesis Tests (for Means). 1. A government agency has received numerous complaints that a particular restaurant has been selling underweight.
Hypothesis Tests Hypothesis Tests Large Sample 1- Proportion z-test.
Hypothesis Tests Hypothesis Tests One Sample Means.
Inference with Proportions II Hypothesis Testing Using a Single Sample.
Testing Hypotheses About Proportions Ch. 20 Part 1 One-Proportion z-tests.
Statistics 20 Testing Hypothesis and Proportions.
Slide Slide 1 Hypothesis Testing 8-1 Overview 8-2 Basics of Hypothesis Testing Chapter 8.
Hypothesis Tests One Sample Means
Testing Hypotheses About Proportions
Basketball Applet
AP Statistics Testing Hypothesis About Proportions
Testing Hypotheses about Proportions
Hypothesis Tests One Sample Means
Testing Hypotheses About Proportions
Hypothesis Tests for 1-Sample Proportion
Testing Hypotheses about Proportions
Daniela Stan Raicu School of CTI, DePaul University
Hypothesis Tests One Sample Means
Hypothesis Tests with Proportions
Testing Hypotheses About Proportions
Inference on Proportions
Inference on Proportions
Presentation transcript:

Hypothesis Tests Hypothesis Tests One Sample Proportion

What is hypothesis testing? A statistical hypothesis is an assumption about a population parameter. This assumption may or may not be true. The best way to determine whether a statistical hypothesis is true would be to examine the entire population. Since that is often impractical, researchers typically examine a random sample from the population. If sample data are consistent with the statistical hypothesis, the hypothesis is accepted; if not, it is rejected.

Types of questions we can answer… Has the president’s approval rating changed since last month? Has teenage smoking decreased in the past five years? Is the global temperature increasing? Did the Super Bowl ad we bought actually increase sales? To answer such questions, we test hypotheses about models.

A government agency has received numerous complaints that a particular restaurant has been selling underweight hamburgers. The restaurant advertises that it’s patties are “a quarter pound” (4 ounces). How can I tell if they really are underweight? Take a sample & find x. expect unlikely But how do I know if this x is one that I expect to happen or is it one that is unlikely to happen? Hypothesis test will help me decide!

What are hypothesis tests? Calculations that tell us if a value occurs by random chance or not – if it is statistically significant Is it... – a random occurrence due to variation? – a biased occurrence due to some other reason?

Nature of hypothesis tests - First begin by supposing the “effect” is NOT present Next, see if data provides evidence against the supposition Example:murder trial How does a murder trial work? First - assume that the person is innocent must Then – must have sufficient evidence to prove guilty Hmmmmm … Hypothesis tests use the same process!

Nonstatistical Hypothesis Testing… A criminal trial is an example of hypothesis testing without the statistics. In a trial a jury must decide between two hypotheses. The null hypothesis is The defendant is innocent The alternative hypothesis or research hypothesis is The defendant is guilty The jury does not know which hypothesis is true. They must make a decision on the basis of evidence presented.

Nonstatistical Hypothesis Testing… In the language of statistics convicting the defendant is called rejecting the null hypothesis in favor of the alternative hypothesis. That is, the jury is saying that there is enough evidence to conclude that the defendant is guilty (i.e., there is enough evidence to support the alternative hypothesis). If the jury acquits it is stating that there is not enough evidence to support the alternative hypothesis. Notice that the jury is not saying that the defendant is innocent, only that there is not enough evidence to support the alternative hypothesis. That is why we never say that we accept the null hypothesis.

Steps: 1)Hypothesis statements & define parameters 2)Assumptions 3)Calculations 4)Conclusion, in context Notice the steps are the same except we add hypothesis statements – which you will learn today

Writing Hypothesis statements: Null hypothesis – is the statement being tested; this is a statement of “no effect” or “no difference” Alternative hypothesis – is the statement that we suspect is true H0:H0: Ha:Ha:

The form: Null hypothesis H 0 : parameter = hypothesized value Alternative hypothesis H a : parameter > hypothesized value H a : parameter < hypothesized value H a : parameter = hypothesized value

Hypotheses for proportions: H 0 : p = value H a : p > value where p is the true proportion of context Use >, <, or ≠

A large city’s Department of Motor Vehicles claimed that 80% of candidates pass driving tests, but a newspaper reporter’s survey of 90 randomly selected local teens who had taken the test found only 61 who passed. I’ll assume that the passing rate for teenagers is the same as the DMV’s overall rate of 80%, unless there’s strong evidence that it’s lower. State the hypotheses : Where p is the true proportion of teenagers that pass the driving test H 0 : p =.8 H a : p <.8

A government agency has received numerous complaints that a particular restaurant has been selling underweight hamburgers. The restaurant advertises that it’s patties are “a quarter pound” (4 ounces). State the hypotheses : Where is the true mean weight of hamburger patties H 0 : = 4 H a : < 4

A car dealer advertises that is new subcompact models get 47 mpg. You suspect the mileage might be overrated. State the hypotheses : Where is the true mean mpg H 0 : = 47 H a :  < 47

Many older homes have electrical systems that use fuses rather than circuit breakers. A manufacturer of 40-A fuses wants to make sure that the mean amperage at which its fuses burn out is in fact 40. If the mean amperage is lower than 40, customers will complain because the fuses require replacement too often. If the amperage is higher than 40, the manufacturer might be liable for damage to an electrical system due to fuse malfunction. State the hypotheses : Where is the true mean amperage of the fuses H 0 : = 40 H a : = 40

Activity: For each pair of hypotheses, indicate which are not legitimate & explain why Must use parameter (population) x is a statistics (sample) p is the population proportion! Must use same number as H 0 ! rho is parameter for population correlation coefficient – but H 0 MUST be “=“ ! Must be NOT equal!

The Reasoning of Hypothesis Testing 2.Assumptions All models require assumptions, so state the assumptions and check any corresponding conditions. Assumptions are the same for the corresponding confidence interval. – Your plan should end with a statement like Because the conditions are satisfied, I can model the sampling distribution of the proportion with a Normal model and…. Watch out, though. It might be the case that your model step ends with “Because the conditions are not satisfied, I can’t proceed with the text.” If that’s the case, stop and reconsider.

The Reasoning of Hypothesis Testing (cont.) 2. Assumptions – Each test we discuss in this class has a name that you should include in your report. – The test about proportions is called a one-proportion z-test.

A large city’s DMV claimed that 80% of candidates pass driving tests. A reporter has results from a survey of 90 randomly selected local teens who had taken the test. Are the conditions for inference satisfied? The 90 teens surveyed were a random sample of local teenage driving candidates. 90(.80)≥10 and 90(.20)≥10 72≥10 and 18≥10 The population of the teenagers who take driving test in a large city would be at least 10(90) = 900. The conditions are satisfied, so it’s okay to use a normal distribution and perform a one- proportion z-test.

The Reasoning of Hypothesis Testing (cont.) 3.Calculations – Under “calculations” we place the actual calculation of our test statistic from the data. – Different tests will have different formulas and different test statistics.

The Reasoning of Hypothesis Testing (cont.) 3.Calculations – The ultimate goal of the calculation is to obtain a P-value. The P-value is the probability that the observed statistic value (or an even more extreme value) could occur if the null model were correct. If the P-value is small enough, we’ll reject the null hypothesis. Note: The P-value is a conditional probability—it’s the probability that the observed results could have happened if the null hypothesis is true.

P-values - The probability that the test statistic would have a value as extreme or more than what is actually observed In other words... is it far out in the tails of the distribution?

Formula for hypothesis test:

A large city’s DMV claimed that 80% of candidates pass driving tests, but a survey of 90 randomly selected local teens who had taken the test found only 61 who passed. What’s the P-value for the one-proportion z-test? n=90, x=61, and a hypothesized p=.80 P-hat = Do this in your calculator: Select STAT  TESTS #5 (1-PropZTest) Z-Test Inpt: Data Stats Po: _____ x: _____ n: _____ prop  po po Calculate Draw

The Reasoning of Hypothesis Testing (cont.) 4.Conclusion – The conclusion in a hypothesis test is always a statement about the null hypothesis. – The conclusion must state either that we reject or that we fail to reject the null hypothesis. – And, as always, the conclusion should be stated in context.

The Reasoning of Hypothesis Testing (cont.) 4.Conclusion – Your conclusion about the null hypothesis should never be the end of a testing procedure. – Often there are actions to take or policies to change.

Statistically significant - In statistics, a result is called statistically significant if it is unlikely to have occurred by chance. What constitutes “surprisingly”? – We typically use a standard of 5%.  Denoted by  – Can be any value – Usual values: 0.1, 0.05, 0.01 – Most common is 0.05

Statistically significant – as smallsmaller The p-value is as small or smaller than the level of significance () fail to reject If p > , “fail to reject” the null hypothesis at the level. reject If p <, “reject” the null hypothesis at the level.

Facts about p-values: ALWAYS make decision about the null hypothesis! Large p-values show support for the null hypothesis, but never that it is true! Small p-values show support that the null is not true. Never accept Never accept the null hypothesis! but say “we fail to reject the null hypothesis”

Never “accept” the null hypothesis!

At an  level of.05, would you reject or fail to reject H 0 for the given p-values? a)p=.03 b)p=.15 c)p=.45 d)p=.023 Reject Fail to reject

“Since the p-value ), I reject (fail to reject) the H 0. There is (is not) sufficient evidence to suggest that H a.” Be sure to write H a in context (words)!

A large city’s DMV claimed that 80% of candidates pass driving tests. Using the P- value of.002, what do these findings conclude? Since the p-value is < α, I reject the H 0. There is sufficient evidence to suggest that the passing rate for teenagers taking the driving test is lower than 80%.

A company is willing to renew its advertising contract with a local radio station only if the station can prove that more than 20% of the residents of the city have heard the ad and recognize the company’s product. The radio station conducts a random sample of 400 people and finds that 90 have heard the ad and recognize the product. Is this sufficient evidence for the company to renew its contract?

Assumptions: Have an SRS of people np = 400(.2) = 80 & n(1-p) = 400(.8) = Since both are greater than 10, this distribution is approximately normal. Population of people is at least Since the conditions are satisfied, so it’s okay to use a normal distribution and perform a one-proportion z-test. One Proportion Z-Test H 0 : p =.2where p is the true proportion of people who heard the ad H a : p >.2 Since the p-value > , I fail to reject the null hypothesis. There is not sufficient evidence to suggest that the true proportion of people who heard the ad is greater than.2. Use the parameter in the null hypothesis to check assumptions! Use the parameter in the null hypothesis to calculate standard deviation!