Chapter 13 Chi-Square Tests. The chi-square test for Goodness of Fit allows us to determine whether a specified population distribution seems valid. The.

Slides:



Advertisements
Similar presentations
Chapter 11 Other Chi-Squared Tests
Advertisements

Chapter 13: The Chi-Square Test
Copyright ©2011 Brooks/Cole, Cengage Learning More about Inference for Categorical Variables Chapter 15 1.
Copyright ©2006 Brooks/Cole, a division of Thomson Learning, Inc. More About Categorical Variables Chapter 15.
© 2010 Pearson Prentice Hall. All rights reserved The Chi-Square Test of Independence.
Chapter 26: Comparing Counts
Ch. 28 Chi-square test Used when the data are frequencies (counts) or proportions for 2 or more groups. Example 1.
Chapter 11 Chi-Square Procedures 11.1 Chi-Square Goodness of Fit.
Ch 15 - Chi-square Nonparametric Methods: Chi-Square Applications
Copyright (c) 2004 Brooks/Cole, a division of Thomson Learning, Inc. Chapter 14 Goodness-of-Fit Tests and Categorical Data Analysis.
11-2 Goodness-of-Fit In this section, we consider sample data consisting of observed frequency counts arranged in a single row or column (called a one-way.
Chapter 26: Comparing Counts. To analyze categorical data, we construct two-way tables and examine the counts of percents of the explanatory and response.
Chi-Square and F Distributions Chapter 11 Understandable Statistics Ninth Edition By Brase and Brase Prepared by Yixun Shi Bloomsburg University of Pennsylvania.
1 Chapter 20 Two Categorical Variables: The Chi-Square Test.
Presentation 12 Chi-Square test.
Testing Distributions Section Starter Elite distance runners are thinner than the rest of us. Skinfold thickness, which indirectly measures.
AP STATISTICS LESSON 13 – 1 (DAY 1) CHI-SQUARE PROCEDURES TEST FOR GOODNESS OF FIT.
Chapter 26: Comparing Counts AP Statistics. Comparing Counts In this chapter, we will be performing hypothesis tests on categorical data In previous chapters,
Copyright © 2013, 2010 and 2007 Pearson Education, Inc. Chapter Inference on Categorical Data 12.
For testing significance of patterns in qualitative data Test statistic is based on counts that represent the number of items that fall in each category.
Chapter 11: Applications of Chi-Square. Count or Frequency Data Many problems for which the data is categorized and the results shown by way of counts.
Chapter 11 Chi-Square Procedures 11.3 Chi-Square Test for Independence; Homogeneity of Proportions.
Chi-Square as a Statistical Test Chi-square test: an inferential statistics technique designed to test for significant relationships between two variables.
Chi-square test or c2 test
Chapter 26 Chi-Square Testing
Chi-Square Procedures Chi-Square Test for Goodness of Fit, Independence of Variables, and Homogeneity of Proportions.
Other Chi-Square Tests
Slide 26-1 Copyright © 2004 Pearson Education, Inc.
FPP 28 Chi-square test. More types of inference for nominal variables Nominal data is categorical with more than two categories Compare observed frequencies.
13.2 Chi-Square Test for Homogeneity & Independence AP Statistics.
+ Chi Square Test Homogeneity or Independence( Association)
Data Analysis for Two-Way Tables. The Basics Two-way table of counts Organizes data about 2 categorical variables Row variables run across the table Column.
Essential Statistics Chapter 161 Review Part III_A_Chi Z-procedure Vs t-procedure.
Chapter 11 Chi- Square Test for Homogeneity Target Goal: I can use a chi-square test to compare 3 or more proportions. I can use a chi-square test for.
The Practice of Statistics Third Edition Chapter (13.1) 14.1: Chi-square Test for Goodness of Fit Copyright © 2008 by W. H. Freeman & Company Daniel S.
Chapter 13 Inference for Tables: Chi-Square Procedures AP Statistics 13 – Chi-Square Tests.
Section 10.2 Independence. Section 10.2 Objectives Use a chi-square distribution to test whether two variables are independent Use a contingency table.
Inference for Distributions of Categorical Variables (C26 BVD)
© Copyright McGraw-Hill CHAPTER 11 Other Chi-Square Tests.
Chapter Outline Goodness of Fit test Test of Independence.
The table shows a random sample of 100 hikers and the area of hiking preferred. Are hiking area preference and gender independent? Hiking Preference Area.
Chapter 11: Chi-Square  Chi-Square as a Statistical Test  Statistical Independence  Hypothesis Testing with Chi-Square The Assumptions Stating the Research.
AGENDA:. AP STAT Ch. 14.: X 2 Tests Goodness of Fit Homogeniety Independence EQ: What are expected values and how are they used to calculate Chi-Square?
11.2 Tests Using Contingency Tables When data can be tabulated in table form in terms of frequencies, several types of hypotheses can be tested by using.
Section 12.2: Tests for Homogeneity and Independence in a Two-Way Table.
Copyright © 2013, 2009, and 2007, Pearson Education, Inc. Chapter 11 Analyzing the Association Between Categorical Variables Section 11.2 Testing Categorical.
Chapter 13- Inference For Tables: Chi-square Procedures Section Test for goodness of fit Section Inference for Two-Way tables Presented By:
Chapter 14 – 1 Chi-Square Chi-Square as a Statistical Test Statistical Independence Hypothesis Testing with Chi-Square The Assumptions Stating the Research.
Section Copyright © 2014, 2012, 2010 Pearson Education, Inc. Lecture Slides Elementary Statistics Twelfth Edition and the Triola Statistics Series.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Chapter 12 Tests of Goodness of Fit and Independence n Goodness of Fit Test: A Multinomial.
Chapter 11 Chi-Square Procedures 11.1 Chi-Square Goodness of Fit.
+ Section 11.1 Chi-Square Goodness-of-Fit Tests. + Introduction In the previous chapter, we discussed inference procedures for comparing the proportion.
Statistics 300: Elementary Statistics Section 11-3.
Chapter 14 Inference for Distribution of Categorical Variables: Chi-Squared Procedures.
Chapter 11: Categorical Data n Chi-square goodness of fit test allows us to examine a single distribution of a categorical variable in a population. n.
The Chi-Square Distribution  Chi-square tests for ….. goodness of fit, and independence 1.
Section 10.2 Objectives Use a contingency table to find expected frequencies Use a chi-square distribution to test whether two variables are independent.
AP Stats Check In Where we’ve been… Chapter 7…Chapter 8… Where we are going… Significance Tests!! –Ch 9 Tests about a population proportion –Ch 9Tests.
Chapter 12 Lesson 12.2b Comparing Two Populations or Treatments 12.2: Test for Homogeneity and Independence in a Two-way Table.
CHI SQUARE DISTRIBUTION. The Chi-Square (  2 ) Distribution The chi-square distribution is the probability distribution of the sum of several independent,
Chi Square Test of Homogeneity. Are the different types of M&M’s distributed the same across the different colors? PlainPeanutPeanut Butter Crispy Brown7447.
Test of Goodness of Fit Lecture 41 Section 14.1 – 14.3 Wed, Nov 14, 2007.
Chi-square test or c2 test
Lecture Slides Elementary Statistics Twelfth Edition
Chapter 12 Tests with Qualitative Data
AP Stats Check In Where we’ve been… Chapter 7…Chapter 8…
Chapter 10 Analyzing the Association Between Categorical Variables
Analyzing the Association Between Categorical Variables
UNIT V CHISQUARE DISTRIBUTION
Presentation transcript:

Chapter 13 Chi-Square Tests

The chi-square test for Goodness of Fit allows us to determine whether a specified population distribution seems valid. The Chi-Square ( ) test is an inferential test that shows whether or not a frequency distribution fits an expected or claimed distribution.

1.The chi-square distribution is NOT symmetric. 2.The shape depends on the degrees of freedom. 3.As the number of df increases, the chi-square distribution becomes more symmetric. Otherwise, each curve is skewed right. 4.All values are non-negative. 5.Chi-Square has df = (number of categories) - 1

1 st : State the hypothesis Ho: Frequency fits a specified distribution (actual equals hypothesized) Ha: Frequency does not fit a specified distribution. (Actual is different from hypothesized). The observed frequency (O), of a category is the frequency (count or value) of the category that is observed in the sample data. The expected frequency (E) of a category is the calculated frequency obtained assuming that the null hypothesis is true. (E=np) n=sample sizep=probability

To use the chi-square goodness of fit test, the following conditions must be met: 1.All observed data are obtained using a random sample. 2.All expected frequencies are greater than or equal to 1. 3.No more than 20% of the expected frequencies are less than 5.

O is the observed: Enter into L1 E is the expected: Enter into L2 L3=(L1-L2)^2/L2 For critical values, use Table C (Chi-Square Distribution)

Calculator Commands: Catalog, Sum (L3)---This is your chi-square value. Distribution, cdf(Ans, E99,df)---This is your p-value.

Chi-Squared Test of Independence A chi-squared two-way table test is a test that determines whether two variables are: Ho: Independent/ have no association. Ha: Dependent/ have an association. Conditions: Same as χ 2 GOF test. Data is randomly selected. All expected cell counts are at least 1 and no more than 20% of the expected cell counts are less than 5. df = (r-1)(c-1)r= # of rows, c= # of columns Do not include the “total” row/column.

Expected Cells

Chi-Squared Test of Homogeneity This tests the claim that several proportions are equal when samples are taken from different populations. Ho: All proportions are equal. Ha: At least one of the proportions is different from the others. df = (r-1)(c-1) Conditions: Same as other Chi-squared tests.