Determine if the given ordered pair is a solution of

Slides:



Advertisements
Similar presentations
Solving Systems of Linear Inequalities Warm Up Lesson Presentation
Advertisements

3-4 Linear Programming Warm Up Lesson Presentation Lesson Quiz
Lesson 7.6, page 767 Linear Programming
Linear Systems Chapter 3 – Algebra 2.
Objective 3-4 Linear Programming Solve linear programming problems.
Solving Linear Inequalities
(1/24 and 1/27) Bellwork: 1)List 2 things we’ve discussed this semester 2)What is one positive thing you’d be willing to share?
Objective Graph and solve systems of linear inequalities in two variables.
Linear Programming Unit 2, Lesson 4 10/13.
Objectives: Set up a Linear Programming Problem Solve a Linear Programming Problem.
Warm Up Graph each inequality. 1. x > –5 2. y ≤ 0
Linear Programming Digital Lesson. Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 2 Linear programming is a strategy for finding the.
Unit 1 Linear programming. Define: LINEAR PROGRAMMING – is a method for finding a minimum or maximum value of some quantity, given a set of constraints.
3-4 Linear Programming Warm Up Lesson Presentation Lesson Quiz
Solve linear programming problems. Objective linear programming constraint feasible region objective function Vocabulary.
Objective Graph and solve systems of linear inequalities in two variables. A system of linear inequalities is a set of two or more linear inequalities.
3.4 Review of Linear Programming
Solving Systems by Graphing
Objectives Graph linear inequalities on the coordinate plane.
Copyright 2013, 2010, 2007, Pearson, Education, Inc. Section 7.6 Linear Programming.
Objective Vocabulary Solve linear programming problems.
Graphing Linear Inequalities in Two Variables Chapter 4 – Section 1.
Warm up  Write the equation of a quadratic function with a vertical compression of 0.2 that is shifted left 1 and up 7.  At a clothing store, shirts.
Solve problems by using linear programming.
Unit 1.6 – Linear Programming
Systems of Inequalities in Two Variables Sec. 7.5a.
Objective Graph and solve systems of linear inequalities in two variables.
Holt Algebra Solving Systems of Linear Inequalities Graph and solve systems of linear inequalities in two variables. Objective system of linear inequalities.
Warm-Up 3.4 1) Solve the system. 2) Graph the solution.
5 minutes Warm-Up 1) Solve the system. 2) Graph the solution.
11/20/2015 6:37 AM1 1 LINEAR PROGRAMMING Section 3.4, ©2008.
Solving Systems of 6-6 Linear Inequalities Warm Up Lesson Presentation
Holt Algebra Solving Systems of Linear Inequalities Warm Up 1. Graph 2x – y > 4. Determine if the given ordered pair is a solution of the system.
3.4: Linear Programming Objectives: Students will be able to… Use linear inequalities to optimize the value of some quantity To solve linear programming.
Class Opener: Solve each equation for Y: 1.3x + y = y = 2x 3.x + 2y = 5 4. x – y = x + 3y = x – 5y = -3.
Warm-up Solve each system of equations:
Get out your Vertices Worksheet!
Thinking Mathematically Algebra: Graphs, Functions and Linear Systems 7.5 Linear Programming.
Holt McDougal Algebra Linear Programming Linear programming is method of finding a maximum or minimum value of a function that satisfies a given.
3.4 Linear Programming Solve linear programming problems in two variables using graphical methods.
LINEAR PROGRAMMING 3.4 Learning goals represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret.
3-5: Linear Programming. Learning Target I can solve linear programing problem.
Linear Programming. What is linear programming? Use a system of constraints (inequalities) to find the vertices of the feasible region (overlapping shaded.
3.3 Linear Programming. Vocabulary Constraints: linear inequalities; boundary lines Objective Function: Equation in standard form used to determine the.
Sullivan Algebra and Trigonometry: Section 12.9 Objectives of this Section Set Up a Linear Programming Problem Solve a Linear Programming Problem.
Chapter 3 Section 4 Linear Programming Algebra 2 January 29, 2009.
LINEARPROGRAMMING 5/23/ :13 AM 5/23/ :13 AM 1.
Digital Lesson Linear Programming.
Systems of Inequalities
Digital Lesson Linear Programming.
Math 1 Warm Up In the Practice Workbook… Practice 7-6 (p. 94)
3.4 Review of Linear Programming
ALGEBRA II HONORS/GIFTED SECTION 3-4 : LINEAR PROGRAMMING
Linear Systems Chapter 3.
and Graphing Inequalities
Linear Programming Objectives: Set up a Linear Programming Problem
Algebra: Graphs, Functions, and Linear Systems
Do Now! Solve the system of equations Do all work on the notecard.
3-4 Linear Programming Warm Up Lesson Presentation Lesson Quiz
Objective Vocabulary Solve linear programming problems.
3-4 Linear Programming Warm Up Lesson Presentation Lesson Quiz
Warm Up Solve for x:
Solving Systems of 5-6 Linear Inequalities Warm Up Lesson Presentation
Systems of Inequalities and Linear Programming
Systems of Inequalities. Linear Programming
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
LINEARPROGRAMMING 4/26/2019 9:23 AM 4/26/2019 9:23 AM 1.
Nature does nothing uselessly.
Section Linear Programming
Presentation transcript:

Determine if the given ordered pair is a solution of Warm Up Determine if the given ordered pair is a solution of x + y ≥ 6 x – 2y >10 2. (10, 1) no 1. (3, 3) no 4. (15, 2) yes 3. (12, 0) yes

Vocabulary Linear programming is method of finding a maximum or minimum value of a function that satisfies a given set of conditions called constraints. Constraint is one of the inequalities in a linear programming problem. Feasible region The solution to the set of constraints (the shaded region)

Example 1: Graphing a Feasible Region Yum’s Bakery bakes two breads, A and B. One batch of A uses 5 pounds of oats and 3 pounds of flour. One batch of B uses 2 pounds of oats and 3 pounds of flour. The company has 180 pounds of oats and 135 pounds of flour available. Write the constraints for the problem and graph the feasible region.

Let x = the number of bread A, and y = the number of bread B. Example 1 Continued Let x = the number of bread A, and y = the number of bread B. Write the constraints: x ≥ 0 The number of batches cannot be negative. y ≥ 0 The combined amount of oats is less than or equal to 180 pounds. 5x + 2y ≤ 180 The combined amount of flour is less than or equal to 135 pounds. 3x + 3y ≤ 135

Graph the feasible region Graph the feasible region. The feasible region is a quadrilateral with vertices at (0, 0), (36, 0), (30, 15), and (0, 45). Check A point in the feasible region, such as (10, 10), satisfies all of the constraints. 

To Do this, we need to find the Objective Function We usually want to do more than just identify the possible solution region… We want the best possible situation Minimize cost Maximize profit Etc. To Do this, we need to find the Objective Function

More advanced mathematics can prove that the maximum or minimum value of the objective function will always occur at a vertex of the feasible region.

Example 2: Solving Linear Programming Problems Yum’s Bakery wants to maximize its profits from bread sales. One batch of A yields a profit of $40. One batch of B yields a profit of $30. Use the profit information and the data from Example 1 to find how many batches of each bread the bakery should bake. **Identify what you’re trying to maximize or minimize and write an equation (the objective function) to represent that quantity

Example 2 Continued Step 1 Let P = the profit from the bread. Write the objective function: P = 40x + 30y Step 2 Recall the constraints and the graph from Example 1. x ≥ 0 y ≥ 0 5x + 2y ≤ 180 3x + 3y ≤ 135

Example 2 Continued Step 3 Evaluate the objective function at the vertices of the feasible region. (x, y) 40x + 30y P($) (0, 0) 40(0) + 30(0) (0, 45) 40(0) + 30(45) 1350 (30, 15) 40(30) + 30(15) 1650 (36, 0) 40(36) + 30(0) 1440 The maximum value occurs at the vertex (30, 15). Yum’s Bakery should make 30 batches of bread A and 15 batches of bread B to maximize the amount of profit.

Check your graph of the feasible region by using your calculator. Be sure to change the variables to x and y. Helpful Hint

Check It Out! Example 3 A book store manager is purchasing new bookcases. The store needs 320 feet of shelf space. Bookcase A provides 32 ft of shelf space and costs $200. Bookcase B provides 16 ft of shelf space and costs $125. Because of space restrictions, the store has room for at most 8 of bookcase A and 12 of bookcase B. How many of each type of bookcase should the manager purchase to minimize the cost?

Understand the Problem 1 Understand the Problem The answer will be in two parts—the number of bookcases that provide 32 ft of shelf space and the number of bookcases that provide 16 ft of shelf space. List the important information: Bookcase A cost $200. Bookcase B cost $125. The store needs at least 320 feet of shelf space. Manager has room for at most 8 of bookcase A and 12 of bookcase B. Minimize the cost of the types of bookcases.

2 Make a Plan Let x represent the number of Bookcase A and y represent the number of Bookcase B. Write the constraints and objective function based on the important information. x ≥ 0 The number of Bookcase A cannot be negative. y ≥ 0 The number of Bookcase B cannot be negative. x ≤ 8 There are 8 or less of Bookcase A. y ≤ 12 There are 12 or less of Bookcase B. 32x + 16y ≤ 320 The total shelf space is at least 320 feet. Let P = The number of Bookcase A and Bookcase B. The objective function is P = 200x + 125y.

Solve 3 Graph the feasible region, and identify the vertices. Evaluate the objective function at each vertex. P(4, 12) = (800) + (1500) = 2300 P(8, 12) = (1600) + (1500) = 3100 P(8, 4) = (1600) + (500) = 2100

Look Back 4 Check the values (8, 4) in the constraints. x ≥ 0 y ≥ 0 x ≤ 8 y ≤ 12 8 ≥ 0  4 ≥ 0  8 ≤ 8  4 ≤ 12  32x + 16y ≤ 320 32(8) + 16(4) ≤ 320 256 + 64 ≤ 320 320 ≤ 320 