Magnetic Monopole Search at a high altitude with the SLIM (Search for Light Magnetic Monopoles) experiment Eduardo Medinaceli.

Slides:



Advertisements
Similar presentations
You have been given a mission and a code. Use the code to complete the mission and you will save the world from obliteration…
Advertisements

Advanced Piloting Cruise Plot.
05/11/2006Prof. dr hab. Elżbieta Richter-Wąs Physics Program of the experiments at L arge H adron C ollider Lecture 4.
Feichter_DPG-SYKL03_Bild-01. Feichter_DPG-SYKL03_Bild-02.
Kapitel 21 Astronomie Autor: Bennett et al. Galaxienentwicklung Kapitel 21 Galaxienentwicklung © Pearson Studium 2010 Folie: 1.
Copyright © 2003 Pearson Education, Inc. Slide 1 Computer Systems Organization & Architecture Chapters 8-12 John D. Carpinelli.
Chapter 1 The Study of Body Function Image PowerPoint
1 Copyright © 2013 Elsevier Inc. All rights reserved. Appendix 01.
1 Copyright © 2010, Elsevier Inc. All rights Reserved Fig 2.1 Chapter 2.
UNITED NATIONS Shipment Details Report – January 2006.
Business Transaction Management Software for Application Coordination 1 Business Processes and Coordination.
1 RA I Sub-Regional Training Seminar on CLIMAT&CLIMAT TEMP Reporting Casablanca, Morocco, 20 – 22 December 2005 Status of observing programmes in RA I.
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Title Subtitle.
My Alphabet Book abcdefghijklm nopqrstuvwxyz.
Multiplying binomials You will have 20 seconds to answer each of the following multiplication problems. If you get hung up, go to the next problem when.
0 - 0.
DIVIDING INTEGERS 1. IF THE SIGNS ARE THE SAME THE ANSWER IS POSITIVE 2. IF THE SIGNS ARE DIFFERENT THE ANSWER IS NEGATIVE.
ADDING INTEGERS 1. POS. + POS. = POS. 2. NEG. + NEG. = NEG. 3. POS. + NEG. OR NEG. + POS. SUBTRACT TAKE SIGN OF BIGGER ABSOLUTE VALUE.
SUBTRACTING INTEGERS 1. CHANGE THE SUBTRACTION SIGN TO ADDITION
MULT. INTEGERS 1. IF THE SIGNS ARE THE SAME THE ANSWER IS POSITIVE 2. IF THE SIGNS ARE DIFFERENT THE ANSWER IS NEGATIVE.
FACTORING Think Distributive property backwards Work down, Show all steps ax + ay = a(x + y)
FACTORING ax2 + bx + c Think “unfoil” Work down, Show all steps.
Addition Facts
Year 6 mental test 5 second questions
C1 Sequences and series. Write down the first 4 terms of the sequence u n+1 =u n +6, u 1 =6 6, 12, 18, 24.
ZMQS ZMQS
Richmond House, Liverpool (1) 26 th January 2004.
REVIEW: Arthropod ID. 1. Name the subphylum. 2. Name the subphylum. 3. Name the order.
ABC Technology Project
1 Undirected Breadth First Search F A BCG DE H 2 F A BCG DE H Queue: A get Undiscovered Fringe Finished Active 0 distance from A visit(A)
© S Haughton more than 3?
© Charles van Marrewijk, An Introduction to Geographical Economics Brakman, Garretsen, and Van Marrewijk.
VOORBLAD.
15. Oktober Oktober Oktober 2012.
1 Breadth First Search s s Undiscovered Discovered Finished Queue: s Top of queue 2 1 Shortest path from s.
Factor P 16 8(8-5ab) 4(d² + 4) 3rs(2r – s) 15cd(1 + 2cd) 8(4a² + 3b²)
Squares and Square Root WALK. Solve each problem REVIEW:
Basel-ICU-Journal Challenge18/20/ Basel-ICU-Journal Challenge8/20/2014.
© 2012 National Heart Foundation of Australia. Slide 2.
Adding Up In Chunks.
Lets play bingo!!. Calculate: MEAN Calculate: MEDIAN
Understanding Generalist Practice, 5e, Kirst-Ashman/Hull
Chapter 5 Test Review Sections 5-1 through 5-4.
GG Consulting, LLC I-SUITE. Source: TEA SHARS Frequently asked questions 2.
1 First EMRAS II Technical Meeting IAEA Headquarters, Vienna, 19–23 January 2009.
Event 4: Mental Math 7th/8th grade Math Meet ‘11.
Addition 1’s to 20.
25 seconds left…...
Januar MDMDFSSMDMDFSSS
Week 1.
We will resume in: 25 Minutes.
©Brooks/Cole, 2001 Chapter 12 Derived Types-- Enumerated, Structure and Union.
Intracellular Compartments and Transport
PSSA Preparation.
Essential Cell Biology
1 Chapter 13 Nuclear Magnetic Resonance Spectroscopy.
Chapter 30 Induction and Inductance In this chapter we will study the following topics: -Faraday’s law of induction -Lenz’s rule -Electric field induced.
Searching for Magnetic Monopoles
Search for nuclearites with the SLIM detector V. Popa, for the SLIM Collaboration From Colliders to Cosmic Rays 7 – 13 September 2005, Prague, Czech Republic.
Astro-Particle Physics with Nuclear Track Detectors Eduardo Medinaceli V. INFN, Sez. Bologna, Italy 1.Nuclear Track Detectors (NTD) 2.SLIM experiment (research.
8 th Topical Seminar on “Innovative Particle and Radiation Detectors” Siena Oct CALIBRATION AND SEARCH FOR EXOTIC PARTICLES WITH CR39 AND MAKROFOL.
A. Bâ, S. Balestra, M. Cozzi, G. Giacomelli, R. Giacomelli, M. Giorgini, A. Kumar G. Mandrioli, S. Manzoor, A.R. Margiotta, E. Medinaceli, L. Patrizii,
KM3NeT: Present status and potentiality for the search for exotic particles V. Popa, for the KM3NeT Collaboration Institute for Space Sciences, Magurele-Bucharest,
Searching for Magnetic Monopoles
Presentation transcript:

Magnetic Monopole Search at a high altitude with the SLIM (Search for Light Magnetic Monopoles) experiment Eduardo Medinaceli for the SLIM collaboration S. Balestra, S. Cecchini, M. Cozzi, M. Errico, F. Fabri, G. Giacomelli, R. Giacomelli, M. Giorgini, A. Kumar, S. Manzoor, J. McDonald, G. Mandrioli, S. Marcellini, A. Margiotta, E. Medinaceli, L. Patrizii, J. Pinfold, V. Popa, I.E. Qureshi, O. Saavedra, Z. Sahnoun, G. Sirri, M. Spurio, V. Togo, A. Velarde, A. Zanini

1931 Dirac: Quantization of electric charge Proc. R. Soc. London, 133 ( 1931) 60 Magnetic Monopoles Dirac relation SU(5) SU(3) C x [SU(2) L x U(1) Y ] EW SU(3) C x U(1) EM 10 2 GeV s s GeV GUT MM GeV Glashow et. al

Intermediate Mass Magnetic Monopoles (IMM) SO(10) GeV s SU(4) x SU(2) L x SU(2) R 10 9 GeV s SU(3) C x [SU(2) L x U(1) Y ] EW +… Virtual vector bosons X, Y? Electroweak Unification W, Z Virtual photons and gluons Confinement region Magnetic field of a point MM Radius (m) Produced in the Early Universe in later phase transitions De Rujula CERN-TH 7273/94, E. Huguet & P. Peter hep-ph/ , T.Kephart, Q. Shafi Phys. Lett. B520(2001)313, Wick et al. Astropart. Phys. 18, 663 (2003) IMMs can be accelerated in the galactic B field to relativistic velocities W = g D B L ~ 6x10 19 eV (B/3 μG)(L/300pc) Galaxy W 6x10 19 eV Neutron stars W eV AGN W eV (10 5 M GeV)

liquid H 2 (c) (b) (a) <β<10 -2 Excitation (Medium as Fermi gas) <β<10 -3 Drell effect M + He M + He* Penning effect He*+ CH 4 He + CH 4 + e - β < Elastic collisions (c) β > Ionization (à la Bethe-Bloch) (Ze eq ) 2 = (gβ) 2 (a) Energy losses of IMM (b)

CR39® ρ = 1.32 g /cm 3 (C 12 H 18 O 7 ) n A/Z = MAKROFOL ® ρ = 1.29 g /cm 3 (C 16 H 14 O 3 ) n A/Z = A GeV 82+ Pb in CR39 20X Mag. 150X150 μm 2 Chemical etching solutions CR39® 0.1% dioctyl phthalate DOP ρ = 1.32 g /cm 3 (C 12 H 18 O 7 ) n 150X150 μm 2 SLIM Nuclear Track Detectors (NTD) detector typesolution CR398N KOH + 1.5% alcohol 70° C 30h strongCR39 DOP8N KOH + 1.5% alcohol 75° C 30h Makrofol6N KOH + 20% alcohol 75° C 30h softCR396N NaOH + 1% alcohol 70° C 40h CR39 DOP 6N NaOH 70° C 40h The alcohol added in the etching solution improved the detector surface quality

Calibrations In 49+ & Pb A GeV CERN–SPS, Pb target Fe 26+ & Si and 5 A GeV BNL–AGS, CH 2 target 0.41 A GeV Fe 26+ and 0.29 A GeV C 6+ HIMAC detector typeZ/β REL [MeVcm 2 /g] v B [ μm/h] CR ±0.4 strongCR39DOP ±0.3 Makrofol ±0.1 softCR ± 0.02 CR39DOP ± 0.02 p-1 Survived beam Fragments Target Incident ion beam NTD Z/ = 78 Z/ = 82 Z/ = Z/ = Z/ = 46 Z/ = 49 CR39 Makrofol

SLIM layout Area = 427 m 2 (7420 stacks) Atm depth = 540 g/cm 2 (5230 m a.s.l.) R ~ 12.5 GV Exposure t = 4.22 years Atm Preassure ~ 0.5 atm Mean Temp = 12 °C Rd concentr. ~ Bq/m 3 Neutron flux = 1.8x10 -2 cm -2 s -1

SLIM stacks and search techniche A = 24 x 24 cm 2 t = g/cm 2 h = 8.37 mm μm 1450 μm 570 μm 125 μm Thickness STRONG SOFT Slow IMM Fast IMM Nuclear fragment

10 5 M IMM GeV > 0.03 Accessible regions in the parameter space (mass, ) for IMMs coming from above

IMM Energy losses in CR39 and Acceptance CR39 (strong)

L5 scan: 500 – 1000 X Mag L1 scan 3 X Mag, stereo microscope; scanned twice ~ 99% 20 – 40 X Mag SLIM scan Coincidence area ~ 0.5 cm 2 Measured with 6.3 ob X 25 oc Mag Event p and θ are equal within 20 %

Classifications of Tracks for Scanning in the SLIM NTDs Different Track Shapes as Observerd in the SLIM NTDs (a) (b) (c) (d) (e) (f) (g) (h) collinear etch-pits

negative positive neutral C 12 H 18 O 7 (ρ = 1.31 g/cm 3 ) dim = 1450 μm x 1 x 1 cm 2 Φ N ~ 1.8x cm -2 s keV – 20 MeV Zanini et Statistical studies of n indiced background in CR39

area = 427 m 2, t = 4.22 years, over 2π. No candidate found! Φ 1.3x cm -2 sr -1 s -1, β>0.03 for IMM SLIM final results

BACKUP SLIDES

Validazione Monte Carlo

Gauge theories of unified interactions predict MMs Mass m M m X /G > GeV ~ 0.02 mg GeV ( Kaluza –Klein poles > GeV, SUSY > GeV ) GUT Monopoles (Gauge, Cosmic,..) SU(5) GeV s SU(3) C x [SU(2) L x U(1) y ] 10 2 GeV s SU(3) C x U(1) EM Grand Unification: virtual X,Y Electroweak unification: W, Z Confinement region: virtual s, gluons, condensate of fermions -antifermion, 4 fermion virtual states B=g/r 2 Magnetic field of a point Dirac monopole Radius (cm) r few fm B ~ g/r 2 Size: extended object

(b) cm 5.0 (a) ~2 cm G = 6.3x (d) G = 6.3x (c) G = 6.3x A Strange Event Observed in the SLIM _7408 Module Layout of the SLIM modules near 7408 module. Positions of the SLIM modules inside the wooden box during the flight Bologna-La Paz and La Paz-Bologna.